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Abstract— Learning-based policy optimization methods have shown
great potential for building general-purpose control systems. However,
existing methods still struggle to achieve complex task objectives while
ensuring policy safety during learning and execution phases for black-
box systems. To address these challenges, we develop data-driven safe
policy optimization (D?SPO), a novel reinforcement learning (RL)-based
policy improvement method that jointly learns a control barrier function
(CBF) for system safety and a linear temporal logic (LTL) guided RL
algorithm for complex task objectives. Unlike many existing works that
assume known system dynamics, by carefully constructing the data sets
and redesigning the loss functions of D?SPO, a provably safe CBF is
learned for black-box dynamical systems, which continuously evolves for
improved system safety as RL interacts with the environment. To deal
with complex task objectives, we take advantage of the capability of
LTL in representing the task progress and develop LTL-guided RL
policy for efficient completion of various tasks with LTL objectives.
Extensive numerical and experimental studies demonstrate that D>SPO
outperforms most state-of-the-art (SOTA) baselines and can achieve over
95% safety rate and nearly 100% task completion rates. The experiment
video is available at https://youtu.be/2RgaH-zcmKkY.

Index Terms— Control barrier function (CBF), linear temporal
logic (LTL), reinforcement learning (RL), safe policy optimiza-
tion.

I. INTRODUCTION

Designing control policies for complex robotic tasks with safety
constraints is difficult and even more challenging if the system
dynamics is unknown. A popular method to deal with black-box
systems is reinforcement learning (RL), which is a sequential decision
making process in which agent finds optimal policies by interacting
with the environment to maximize reward collection, including Atari
[1], robotic motion planning [2], and images segmentation [3].
However, unfettered exploration in RL can lead to unsafe or undesired
behaviors. For instance, when training drones for cruising tasks, they
may collide with obstacles during exploration, as well as struggle
to navigate to specific locations. Finding an optimized policy that
can perform tasks safely is often referred to safe policy optimization,
where “safe” means that the agents have a very low probability of
violating constraints (i.e., entering unsafe subsets) when operating in
the environment, e.g., in a cruise mission, the drone will not collide
with obstacles either during training or deployment. While recent
works investigated this safety issue via safety certificates [4], [5] or
based on accurate system models [6], [7], few of them consider both
safety and task complexity at the same time. Therefore, this work is
motivated to design a provable safe policy optimization method for
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black-box dynamical systems to perform complex tasks (i.e., tasks
subject to temporal and logic constraints).

Optimization-based approaches show great promise in dealing
with dynamical systems. For instance, a novel position-transitional
particle swarm optimization algorithm was developed in [8]. In [9],
an inner second-order solver that employs a Hessian-free method
was developed to avoid the highly expensive manipulations of a
Hessian matrix. In [10], a gradient-based differential neural-solution
was developed for time-dependent nonlinear optimization problems
subject to linear inequality and equality constraints. To achieve
safe policy optimization, control barrier functions (CBFs) have been
widely explored [6], [7], [11], [12], [13], which keep the system
evolving inside a safe invariant set. However, designing a qualified
CBF is challenging and hand-crafted certificates for particular sys-
tems are often required. To address these issues, data-driven methods
that fit CBFs with neural networks have shown significant progress.
For instance, the CBF was parameterized by the support vector
machine in [14] where the state space was characterized as either
safe or unsafe based on the collected sensor data via supervised
learning. However, such an approach cannot guarantee in advance the
existence of control actions such that the learned safe set is forward
invariant. In [15] and [16], safe control policies and barrier certificates
were jointly learned to achieve their goals while avoiding collisions
with static obstacles and other agents. However, these works are only
empirically validated, without establishing formal safety guarantees.
As an exception, the work of [17] develops an optimization-based
approach to learn the CBF from expert trajectories with provable
safety guarantees. A key assumption behind these data-driven-based
approaches is that an explicitly differentiable model of the system
dynamics is required. If the dynamical systems are not accurately
modeled or complete black-box, the aforementioned methods are no
longer applicable. Recently, learning barrier certificates for black-box
dynamical systems was investigated in [18]. The work of [19] extends
the single-step invariant property of the barrier certificate to a multi-
step version and then learns a neural barrier certificate under stepwise
state constraint setting. However, the works of [18] and [19] still lack
provable safety. Safe RL [20], [21], [22] is a popular method for safe
policy optimization, which can handle black-box dynamical systems.
Constrained Markov decision processes (CMDPs) is an alternative to
address system safety. To solve CMDP problems, inspired by the trust
domain, the constrained policy optimization (CPO) was developed
in [23] and Lagrange multipliers-based approaches were developed
in [24]. Based on CPO, the projection-based CPO (PCPO) [25]
solves the problem of slow convergence after encountering infeasible
solutions in CPO. In [26], the safe policy adaptation with constrained
exploration (SPACE) uses a baseline policy to accelerate training.
However, these methods depend on convex approximation for objec-
tive and constraints, which will cause residual error and lead to poor
performance. As for Lagrange multipliers-based approaches, a novel
multitimescale-constrained actor-critic approach, namely reward CPO
(RCPO) was developed in [27], which leverages penalty signals to
guide the policy learning to meet the constraints. However, the above
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safe RL algorithms suffer from challenging reward design, lack of
interpretable safety guarantees, low sampling efficiency, and complex
constraints, making it difficult to yield satisfactory performance.
A provable and efficient safe policy optimization method is needed
when encountering black-box dynamical systems.

Besides safety concerns, another challenge is the synthesis of con-
trol policies for complex task constraints. Due to the rich expressivity
in specifying complex logic and temporal constraints, linear temporal
logics (LTLs) are used with RL to enable efficient learning [28], [29],
[30], [31]. However, most of these methods struggle to guarantee
the safety during exploration and execution. In contrast, the works
of [32] and [33] ensure exploration safety and policy safety while
satisfying complex task constraints by integrating CBF with temporal
logic-guided RL (TLGRL). However, the CBF in [32] and [33]
requires accurate dynamics model and has to be manually designed,
which imposes considerable challenges in real-world applications.

In this work, we propose data-driven safe policy optimization
(D?SPO), a new RL-based policy improvement method for black-box
dynamical systems that jointly learns a CBF for system safety and
an LTL-guided RL algorithm for complex task objectives. Since
synthesizing CBF by hand for dynamical systems is challenging,
data-driven methods are exploited to learn CBF from collected
demonstrations of safe and desirable behaviors. Unlike many existing
works that assume known system dynamics, by carefully constructing
the data sets and redesigning the loss functions of D?SPO to enable
the back propagation of the gradient to the control policy, a provably
safe CBF is learned for black-box dynamical systems. During the
learning process, the CBF continuously evolves using the online data
collected by the RL for improved system safety. In addition, D2SPO
takes advantage of the capability of LTL in representing the task
progress, and develops LTL-based reward functions to guide the agent
learning RL policy. Thanks to the fact that LTL can decompose the
training task at an abstract level and inform the agent about their
current task progress to facilitate robot learning, D2SPO can learn to
accomplish tasks with complex logic and temporal constraints more
efficiently.

The main contributions are summarized as follows.

1) A novel D’SPO is developed for black-box dynamics subject to
safety constraints and complex LTL tasks constraints. A prov-
ably safe CBF is learned for black-box dynamical systems,
which continuously evolves for improved system safety as RL
interacts with the environment.

2) The developed D>SPO takes advantage of RL algorithms in
learning high-performance controllers while utilizing CBF as
safety certificates to guide the exploration of polices. Hence,
D?SPO can greatly enhance the system safety not only by the
learned policy but also during the exploration process of RL.

3) Extensive numerical and experimental studies demonstrate that
D?SPO outperforms most state-of-the-art (SOTA) baselines
and can achieve over 95% safety rate and nearly 100% task
completion rates.

II. PRELIMINARIES
A. Reinforcement Learning

As a sequential decision-making process, RL is usually modeled
as a Markov decision process (MDP) M = (S, A, 7,r, ), where
S is the state space, A is the action space, 7 : § x A > S is the
state-action transition function, r : S x A x S — R is the reward
function, and + is the discount factor. Given a policy  that maps a
state to an action, the reward r is received after applying the action.
The expected cumulative reward is defined as O, = E, [Zfio v'r.].
A common goal is to learn an optimal policy 7* = argmax, Q.
Table I summarizes the symbols.
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TABLE I
SYMBOL APPOINTMENT
Symbol Description
S state space
A action space
T S X A +— S, the state-action transition function
r reward function
¥ discount factor
h R™ — R, a twice continuously differentiable function
@ LTL formula
s(t) system state, s(t) € R"™
u(t) system control input, w(t) € R
f system dynamics
At an extremely small sampling rate
sp(t + At) the estimated state at ¢ + A\t using the nominal model fy,
sg (t + At) an error-free estimation of s (t + At)
27/: current state s (t)
z; the state s g (t + At)
Og {obs; }lj\il represent a set of obstacles
within the sensing range of the agent at s(t)
b(z;,0s) the distance from z; to the closest obstacle in O g
/ ’
zjand x; b(z;,Os) and b(z;, Os), respectively
d € ]R+ a desired safety threshold
Be,p(z;) {z eR™| |z —=; lp< e}
the closed p-norm ball centered at x; € R™ with radius €
/ /
bd(D ) the boundary of D
Lip(-,€) the upper bound of the Lipschitz constant

given its argument is in an e-neighborhood
Ys: Yu- Yexp- Ly, and Le  positive constants determined by the €

and €-nets using the data from the data-sets X g and X ,

q and q’ L (Zt—l) and L (zy ), respectively,
denote the automaton states of B¢ as defined in Sec. II-B
L maps the state z to an automaton state
k1 and ko tuning parameters, € rt
dg the distance to the destination
Iep the index of episode

As, Aus Aes Ag all € R+, tuning parameters indicating the relative

importance to balance the goal-reaching and safety objectives

B. Linear Temporal Logic

LTL is a formal language capable of expressing rich task speci-
fications. Given the atomic propositions AP, the syntax of the LTL
formula is defined as follows:

¢ z=true |ap | = | g1 A2 | O | p1Ug

where true is the Boolean value, ap € AP is an atomic proposition,
¢, ¢1, ¢, are LTL formulas, — (negation) and A (conjunction) are
standard Boolean operators, and O (next) and U (until) are temporal
operators. The semantics of an LTL formulae is defined over an
infinite sequence o = 0407, ... with o; € 24P, i € Z.,, where 24P
represents the power set of AP. Denote by o = ¢ if the word o
satisfies the LTL formula ¢. Detailed descriptions of the syntax and
semantics of LTL can be found in [34].

An LTL formula can be translated to a nondeterministic Biichi
automaton (NBA) B = {Q, qo, X, A, F}, where Q is a finite set of
automaton states, and gy € Q is the initial state, ¥ = 2P is the input
alphabet, A: S x S — 2% is the transition function, and F € Q is the
set of accepting states. For any LTL formula ¢, one can construct an
NBA with input alphabet ¥ accepting all and only words that satisfy
¢ [34]. NBA will be used in this work to indicate the task progress.
To convert an LTL formula to an NBA, readers are referred to [35]
for algorithms and implementations.

III. PROBLEM FORMULATION
Consider a black-box dynamical system
§(1) = f(s(0), u(@)),

where s(t) € R" and u(t) € R™ represent the system state and
control input, respectively, and the system dynamics f is unknown.

s(0) e R” 1)
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Fig. 1. Framework of D>SPO consists of three main components: the robot task expressed by LTL specification, the learning of CBF for system safety, and
the learning of policies for LTL tasks. Using online collected demonstrations of safe and desirable behaviors, the CBF is continuously learned and improved,
which is then integrated with the LTL-guided RL policy to achieve safe exploration and robot control.

The system in (1) is considered as safe if the states are restricted
within the set

C:={s eR" | h(s) > 0} 2)

where h: R" — R is a twice continuously differentiable function.
That is, the set C models system safety specifications.

Definition 1 [6]: Let D be an open set such that D D C. The
function A(s) is called a CBF on D if there exists a locally Lipschitz
continuous extended class C function «: R — R such that for all
seD

sup{{Vh(s), f(s,w)) +a(h(s)} =0 3)
ueld
where U/ € R™ is the control space. The set of inputs induced by the
CBF h(s) is defined as follows:

Z(s) :={u e U | (Vh(s), f(s,u)) +a(h(s)) = O}. @

The following lemma indicates that for all s € D, the safety of system
(1) can be guaranteed with appropriate control input u(s) € Z(s).

Lemma 1 [6]: Assume that h(s) is a CBF on D and u(s) € Z(s)
is locally Lipschitz continuous. Then, it holds that s(z) € C for all
t>0if s(0) eC.

Lemma 1 indicates, given a valid CBF, the system safety is
guaranteed. However, the constructed CBF in (3) builds upon a key
assumption that the system dynamics f (s, u) is known. If the system
dynamics is unknown, as in this work, significant challenges are
imposed. Hence, given a black-box dynamical system and an LTL
task ¢, the goal of this work is to: 1) learn the CBF using data
collected during run time without knowing system dynamics and
2) develop safe RL algorithms that synthesize the learned CBF to
accomplish the LTL task ¢.

Example 1: To elaborate this idea, we use a navigation task as
a running example throughout this work. Consider a mobile robot
navigating in an environment scattered with a set of M obstacles
{obs;}!1,. The robot dynamics is unknown as in (1) and it can
only detect the obstacles within its sensing range, e.g., a disk area
with radius H. The agent is required to navigate among a set of
destinations while avoiding collision with obstacles. Such a task is
represented as an LTL formula ¢. Let (x, y) and ® denote the position
and orientation of robot and let G denote the geometric safe set.! The
control inputs are the angular velocity w and linear velocity v.

IThe geometric safe set G is a superset of C, i.e., C C G, that can be
directly specified on the state-space of the system (i.e., the free motion region
without collisions with obstacles).

IV. DATA-DRIVEN SAFE POLICY OPTIMIZATION

This section presents the D?SPO for black-box dynamical systems
with safety constraints and LTL task constraints. We first present how
the dataset of expert demonstration is constructed in Section IV-A,
based on which an optimization-based approach is developed to
facilitate the learning of CBF in Section IV-B. Together with the
LTL-guided RL policy developed in Section IV-C, the D?*SPO is
finally presented in Section IV-D which generates safe policies for
the completion of LTL tasks. The architecture of D?SPO is illustrated
in Fig. 1.

A. Construction of the Datasets of Safe Demonstration

Despite the unknown dynamics, suppose that the states s(f) and
s(t + At) of the system (1) can be sampled. Unlike many existing
works with known differentiable dynamics f, due to the considered
black-box dynamics, the policy gradient cannot be back-propagated to
update the controller in this work. To address this challenge, we con-
sider a differentiable nominal model f,, which can be established
using many existing methods, e.g., fitting a neural network using
sampled system states [36]. Note that f, does not have to perfectly
match the system (1).

Given the current control input u(¢) and the sampled system state
s(t), the estimated state at r + Ar using the nominal model f, is
denoted by

st + A1) = s@) + fu(s(0), u(®))At. (5)

Based on (5) and the sampled system state s(r + At), inspired by
[18], we construct

st + At) =5,(t + At) + g(s(t + At) — 5,(t + At)) 6)

where g(s) = s is an identity function but without gradient. That is,
sg(t + At) is an error-free estimation of s(t + At). The requirement
of no gradient is to avoid the back-propagation of the its gradient to
the argument s.

Based on (5) and (6), a set of N discretized data-point-pairs is
constructed as T = {(z,z], 05)}?’: - To facilitate the following
development, we use z; and z; to represent the current state s(t)
and the state s,(t + At), respectively, and use O, = {obs,—}f"i’] to
represent a set of obstacles within the sensing range of the agent at
s(t). To learn CBF via collected data, a crucial step is to identify
a set of safe states that can be exploited to learn the CBF. Hence,
after obtaining the data-point-pairs 7', the next is to construct the
safe demonstration P, from T. Specifically, we propose b(z;, Oy)
refer to I, based on which we construct the set of data-point-pairs
Pep = {(xi, x)) | x; = d}"',., where x; = b(z;, O,), x| = b(z}, O,),
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V(zi, 2}, O5) € T and d € R is a desired safety threshold. Note that
P, is defined based on the relative distance, which improves the
response to the obstacles. In Sections IV-B-IV-D, we will show how
Pep can be exploited to learn the CBF. It is worth pointing out that
Pexp is online updated during the runtime, which enables continuous
improvement of CBF using the newly generated date by RL.

B. Learning of Control Barrier Function

In this section, we present how the CBF is learned from P,
without knowing the system dynamics. We first define regions D’ :=
UM, Bey(x:), VXi € Peyp, and D := D'\ bd(D'), where B, ,(x;) =
{x e R"| | x —x; ||,< €} denotes the closed p-norm ball centered
at x; € R" with radius € and bd(D’) denotes the boundary of D’.
By adjusting € or ignoring the sampled data near the boundary of D,
D C G can be ensured. Then, we construct the set?

L2 {bd(D)® B, ,(0)}\ D

which can be considered as a ring with width o around D. The idea
behind is to define regions such that i(x;) > O for x; € D and
h(x;) < 0 for x; € L so that CBF can be learned. Based on D, the
safe dataset is denoted as X, = {x;|(x;, x]) € Pep}. Similarly, to get
unsafe dataset, X, = {x,-};vjo is constructed by sampling from £. The
set X, and X, form the e-net and €-nets on D and L, respectively,
where the e-net indicates that for any x € D, there exists x; € X;
such that |lx — x;||, < e.

Consider a twice continuously differentiable function 4 : R* — R
with the local Lipschitz bound

| h(x1) —h(x2) |

L,(x) 2 su
' P ” X1 — X2 ”p

x1,X2€B8e,p (%)
To ensure that the learned CBF is valid with respect to Definition 1,
we have the following constraints.
Proposition 1: Suppose h(x) is Lipchitz continuous with constant
L, (x). It holds that 4(x) < O for all x € L, if

h(x)) < =y, Vx € X¢

where X, is an €-net of £ with € < ~,/L;(x;).

The proof is given in appendix. After finding the constraint on €,
we consider a function that finds the condition for €.

Proposition 2: Denote by e(x) = ﬁ(x) + a(h(x)) and suppose
e(x) is Lipchitz continuous with constant L,(x). It holds that e(x) >
0 for all x € D, if

e(xi) = VYexp in € Xs

where X is an e-net of D with € < vp/Le(x;).

The proof is given in appendix. Based on the Propositions 1
and 2, the CBF can be learned from data by solving the following
optimization problem:

min || /2 ||
st h(x;) =y, Vx; € Xy
h(xj)) <=y Vxi € X¢
Lip(h(x;)),€) <L, Vx; € X
e(Xi) = Yop VX € X,
Lip(e(x;), €) < L. Y(x;, x]) € Pexp- 7
In (7), Lip(-, €) indicates the upper bound of the Lipschitz constant

given its argument is in an e-neighborhood, and the hyperparameters
Ys» Yu» Yexps Ln, and L, are positive constants determined by the €

2For two sets D; and Dy, the Minkowski sum is defined as D; @ D; =
{xi +x2 € R" | x; € Dy, x € D2}.
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and €-nets using the data from the datasets X, and X . The first and
second constraints ensure that 4(x) > 0 if x is in the safe set X, and
h(x) < 0 if x is in the unsafe set X . The fourth constraint ensures
the derivative condition in (3). Although the learning of CBF can be
well formulated as an optimization problem as in (7), it cannot be
solved as e(x) contains A(x), which is not available due to black-
box dynamics. We will show in Section IV-D how this issued can be
addressed.

C. Temporal Logic-Guided RL

Due to the consideration of black-box dynamical systems, model-
free RL is employed to search for a policy 7 to complete the LTL
task ¢. TLGRL is developed in this work, which takes advantage of
the capability of LTL in representing the task progress to design
the reward function of RL so that 7,; can be efficiently learned.
Specifically, given the state z,_; at time ¢+ — 1 and the state z, after
applying the action a,, let ¢ = L(z,—;) and ¢’ = L(z,;) denote the
automaton states of By as defined in Section II-B, where L maps
the state z to an automaton state. Since By is a graph, for any given
q € Q, graph search methods can be employed to determine a node
path that starts from ¢ and ends at the accepting set. We denote
by Prog(g) by such a node sequence that excludes g. The reward
function is designed as follows:

—Cn, if q/ =9
r(zi-1,a1,2) = {¢p,  if ¢’ € Prog(q) ®)
Fgoal s if q/ eF

where ¢, Fgoal» Cp € R*. If ¢ = ¢/, i.e., no mission progress occurs,
a negative reward —c, will be given to motivate transitions to the
next state in By, as less reward is obtained if more steps are spent
in the current state. If the state transits toward the accepting set F,
ie., q' € Prog(q), a positive reward c, will be given. Once the task
completes, i.e., ¢’ € F, a large reward ry,, Will be received.

During training, the completion of a subtask (e.g., visiting a desti-
nation) is evaluated in the form of k,d, - ¢®2’». Given a predetermined
threshold d, the subtask is considered as completed if k,d, -e2'» < d
(i.e., the robot reaches the proximity of the destination). In the early
stage of training where I, is small, a large d; is allowed to relax
the mission completion requirement. As training continues where I,
becomes larger, smaller d; is enforced to meet the mission completion
requirement (i.e., the robot has to be closer to the destination to be
considered as mission completion). Such a design, together with the
progressive rewards, can improve training efficiency, as the robot
can complete the task quickly in the early training to reducing
unnecessary exploration.

With the designed reward function r, RL algorithm is used to
solve the proposed problem. Due to the consideration of continuous
state and action spaces, the twin delayed deep deterministic policy
gradient algorithm (TD3) from [37] is adapted in this work. The
TD3 algorithm can mitigate the issue of overestimation of Q values
by double networks and reduce the correlation of preceding and
following actions using the experience buffer. In TD3, there are two
critic networks (Twin) representing Q, and Q, values, which are
parameterized by 6, and 6,, respectively. The target networks are
parameterized by 0] and 65, respectively, with the relatively smaller
one serving as the target Q network, i.e.,

y=r+yminQy (7, a)

where r is the reward designed in (8). The actor network is param-
eterized by ¢ and the control action a is selected according to the
policy network m,. After applying a, the reward r and new state z’
are obtained. Then, at time step 7, the agent observes the current
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state z, and takes action a,. The transition tuple (z, a, r, z’) is stored
in the replay buffer. To enable adequate exploration and smoothing
regularization, clipped Gaussian noise is added to the action as
follows:

a=mny(Z)+& &~clipN(0,6),—c,c).

Randomly sampling mini-batch of T transitions from the replay
buffer, the critics are updated by following:

1 2,
0; =arg;inm?2(y— 04 (z,0))", i=12.

The policy is optimized by following the gradient

Va QHI (z,a) |a:rz¢(z) V¢7T¢ (2@).

D. Data-Driven Safe Policy Optimization

An unconstrained relaxation of problem (7) is proposed in this
section which can be solved efficiently in practice by first-order
gradient-based methods. The idea is outlined in Algorithm 1, which
consists of an outer loop and an inner loop. Since each outer loop
has at most 200 inner loop steps, N outer loops has at most 200N
loop steps, and thus the time complexity of Algorithm 1 is O(N).

Specifically, we model joint control policy = and CBF # as neural
networks with parameters £2 and @, respectively. The unconstrained
optimization is then formulated as follows:

T, =minT(O, 2) )
where
T = )" max{y, — he(x), 0}
x;i€Xs
T2 = > max{y, +ho(x), 0}
x,eXp
0 he(x]) —he(x;)
799 — oy — 2O
Y Z max{'y P A7
(x;,x;) € Pexp
— a(ho(x)), 0}
TP = > ll7e) —ma) I3

X; €Xy,2i € Zexp

where T(@, 2) £[| © > +AT° + NI + AT + A, T2. and
Ass Aus Aes Ay € R are tuning parameters indicating the relative
importance to balance the goal-reaching and safety objectives. In (9),
TP and T,° are consistent with the first two constraints in (7). 7T,
indicates that the joint control policy m, should be close to the
RL policy m; generated in Section IV-C to maximally complete the
LTL task ¢. Since f is unknown in (1), the gradient cannot be
back-propagated to £2. Instead, we approximate h(x) by (h(x') —
h(x))/At, where x and x’ are defined in Section IV-A. It is worth
pointing out that the datasets are not fixed during training and will
be periodically updated with new samples during the runtime by the
current controller.

The following theorem shows that
learn the CBF.

Theorem 1:

T2 is a valid candidate to

T2 is differentiable with respect to the parameter
§2, and when Ar — 0, this is an error-free approximation.

Proof: When the fit model is differentiable, s, and s, in (6)
are differentiable w.s.t. 7w, T, is also differentiable w.s.t. 7 and its
parameter 2. Thus, VT, exists. Since s,(f + At) is an error-free
estimation of s(f + Ar), ii(x) is an error-free approximation when
At — 0, thus 7, is an error-free approximation when At — 0. H
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Algorithm 1 Learning Controller
for Black-Box Systems

1: Input: State sets X, X, and set P,,,, loss function 7;($2, @),
training iterations N and episode steps E.

2: Initial: controller 7w with initial random parameters 2, CBF
h with parameters ©. Initialize critic networks Qg,, Qy,, and
actor network with random parameters 6, 6,, ¢. Initialize target
networks 0] <0;, 6;<0,, ¢’ «<¢. Initialize replay buffer.

3: for i=0, ... N do

4 Initialize Trajectory data-set D <0}

5 GET(z(0))

6: for j=0, ... E do

7.

8

9

71(2) <7 (25 @)
D;<«TRAJECTORY (7 (-; £2))
: Store transition tuple (z, 7 (-; £2),7,7)
10: D<DUD,

11: X., X, P.., <~ UPDATE(D)
12: if i mod d then

13: Update 6;

14: Update ¢, 6/, ¢’

15: end if

16: end for

17: 2, ®<UPDATE(£2, ©, X,, Xz, Perp, T1)
18: end for

19: return parameter £2 of 7w and parameter @ of h
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Fig. 2. (a) Evolution of reward function for ¢;. (b) Evolution of reward for
the relaxed ¢; with fewer obstacles and destinations.
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Fig. 3. Performance of TLGRL when completing different level tasks. (a) Is
the reward curves for each method on complex cruising missions. (b) Display
the performance of high-freedom cruising mission.

V. SIMULATIONS AND EXPERIMENT

Numerical simulation and physical experiments are carried out to
evaluate the performance of D*SPO in terms of: 1) the effectiveness
of the learned CBF; 2) the learning efficiency of TLGRL in complet-
ing desired tasks; and 3) the performance in physical experiment.

A. Experiment Setup

1) Environments: Consider a workspace consisting of four areas of
interest and eight obstacles scattered in the environment. The agent
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TABLE II
PERFORMANCE OF DIFFERENT METHODS FOR ¢

Method Safety Rate  Task Completion Rate
CPO [23] 90.71% 19.44%
LPPO [27] 96.84% 0%
LTD3 83.08% 0%
LSAC 77.76% 96.74%
RCRL [38] 74.47% 77.52%
D2SPO (Ours) 95.23% 99.31%

is required to monitor the workspace by sequentially visiting the
areas of interest while avoiding obstacles. We consider two tasks
of different complexities

$1 = (mA3)UA) A ((mA)UA)) A (QAYD)
¢2 = (A1 A (OA3)) V (A3 A (OAY))
A(O(O(Ag A (O(0A2))))

where A;, i = 1, ...4, represents the ith area of interest. The task ¢,
requires the agent to visit the areas of interest in a given order (i.e.,
A A, A3). Such an order is relaxed in task ¢, to give the agent more
freedom to complete the task (i.e., AjA3A4A, or A3A;A4A5). In the
following analysis, ¢; will be used to evaluate the performance of
our approach against the SOTA methods, while both ¢; and ¢, will
be used to validate the effectiveness of TLGRL.

2) Baseline: For comparisons, we consider the following SOTA
methods: 1) CPO [23]; 2) reaching constrained RL (RCRL) [38], and
3) a set of variants of Lagrangian methods [27] with mainstream RL
algorithm, i.e., PPO-Lagrangian (LPPO), TD3-Lagrangian (LTD3),
and SAC-Lagrangian (LSAC).

3) Indicator Definitions: These methods, as well as our approach,
are trained for 20000 episodes with a maximum of 200 steps per
episode under the same task and environment. The safety rate is
defined as the ratio of the number of episodes that the agent does
not hit the obstacle to the total episode number. The task completion

(a)—(d) Are the surface plots of the learned CBF under different quantities and location and (e)-(h) Are the corresponding level set plots of the

TABLE III
PERFORMANCE OF DIFFERENT METHODS FOR RELAXED ¢

Method Safety Rate  Task Completion Rate
CPO [23] 94.49% 98.02%
LPPO [27] 91.59% 63.50%
LTD3 95.10% 97.11%
LSAC 93.94% 98.75%
RCRL [38] 94.19% 94.82%
D2SPO (Ours) 97.94 % 99.48 %

rate is defined similarly as the ratio of the number of episodes that
the agent completes the task to the total episode number.

B. Main Results

The simulation results are shown in Table II and Fig. 2(a), where
the safety rate and the task completion rate for the last 2000 episodes
are reported. The results indicate that the SOTA methods either fail to
accomplish the specified task or violate the safety constraints. This
is due to the difficulty of CPO in guaranteeing safety during the
training process. The Lagrangian-based safe RL methods (LPPO,
LTD3, and LSAC) aim to find a balance between accomplishing
tasks and satisfying safety constraints, and it is found that the
Lagrangian-based methods are very sensitive to the initial values
of the Lagrange multipliers. Since the parameters in the multipliers
and RL are updated alternately and can converge to a saddle point,
its performance varies considerably with different RL algorithms.
In our experiments, PPO and TD3 are more inclined to satisfy the
safety constraints under the same parameter conditions, but this also
greatly limits their exploration performance, making it difficult to
complete the task. It can be seen that SAC has a high task success
rate, which is due to the fact that SAC obtains superior exploration
performance by maximizing the entropy of the action distribution
in each state compared to PPO and TD3. In contrast, our method
guarantees training and deployment safety through the learned CBF,
while guaranteeing task completion through TLGRL algorithm, and
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Fig. 5. (a) Physical environment. (b)—(d) Corresponding environment in

simulation, where black squares indicate the obstacles, the blue and green
dots indicate the initial position of the robot and the areas of interest. The
performance after 2000 episodes, 10000 episodes, and 20000 episodes of
training are shown in (b)—(d), respectively.

thus outperforms these baselines in terms of task completion and
safety guarantees.

C. Ablation Study

1) Safety in Simple Tasks: To show the performance on simple
tasks, we consider a relaxed task that simplifies ¢; by considering
the same navigation task but only with one obstacle and two areas
of interest. As indicated in Table III and Fig. 2(b), for relatively
simple tasks, these SOTA methods can yield satisfying performance
in terms of mission completion and safety guarantees, although our
approach still outperforms them. However, if more complex tasks are
considered as in Table II, their performance degrades significantly
while our approach still shows promising performance. In summary,
the SOTA methods might work for relatively simple tasks, but in
general cannot yield satisfactory performance for complex tasks.
In contrast, our approach works for both simple and complex tasks
and outperforms SOTA methods in terms of mission completion and
safety guarantees.

2) Role of LTL: To show the learning efficiency of TLGRL,
we first consider the environment without obstacles. The ¢; and
¢, are both present to show the benefit of our method. RL-¢, and
RL-¢, mean that the agent performs ¢, and ¢, using the method
in [37], respectively. The performance of RL-¢;, RL-¢,, TLGRL-¢,,
and TLGRL-¢, are shown in Fig. 3(a). Clearly, TLGRL significantly
improves the speed of convergence and the value of the reward
compared to basic RL, which means temporal logic actually improves
the learning efficiency in RL. Then, the safety-concerned environment
is incorporated to show whether the approach in the learning process
is still effective or not. Let SL denote the variant of D?’SPO without
LTL-guided progressive reward. The performance of SL-¢;, SL-¢,,
D?SPO-¢;, and D2SPO-¢, are presented in Fig. 3(b). D?’SPO obtains
far more return than SL, which is mainly due to the progression
reward in (8) that guides the learning toward mission completion.

D. Physical Experiments

Physical experiments are carried out in this section, where the
turtlebot with limited sensing capability, e.g., only detect obstacles
within a certain radius, is used. To demonstrate the capability

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

of learning a valid CBF via interactions with the environment,
we consider four cases with different deployment of obstacles and
destinations. TD3 is employed for the turtlebot to explore the
environment, which can also be replaced by other RL algorithms.
Fig. 4(a)—(d) shows the learned CBEF, respectively, while Fig. 4(e)—(h)
shows the corresponding contours. Note that the areas below 0 may
be connected if the randomly generated obstacles are too close.

One of the four physical environments is shown in Fig. 5(a), where
the blue squares indicate the obstacles, the green square is the initial
position of the robot, and red disk are the areas of interest. The
turtlebot is tasked to access the given area in the order of A;A,As;.
In the early training phase, although the mission of visiting areas
of interest is not completed yet, the robot can successfully avoid
obstacles, which demonstrates the safety during exploring. As more
training is carried out, the robot finally completes the task with
collision avoidance. The experiment video with more explanations
is provided.?

VI. CONCLUSION

The D?SPO for black-box dynamical systems is developed in this
work, which jointly learns a CBF for system safety and a linear
TLGRL algorithm for complex task objectives. Extensive numerical
simulation shows that D’SPO outperforms SOTA baselines. The
effectiveness of D?SPO is also verified in physical environments.

APPENDIX
A. Proof of Proposition 3
Proof: For any x € L, there exists x; € X satisfying || x —x; || <
€ < 7,/Ly(x;), we have
h(x) = h(x) —h(x;) +h(x) <[ h(x) = h(x) | =
< Lpx) hx —xi llp =y < Lp(xi)é =y, < 0.

B. Proof of Proposition 4
Proof: For any x € D, there exists x; € X, satisfying || x —x; || <
€= 'Yexp/Le(xi), we have
e(x) = e(x) = e(x) + () = Yop— | €(x) — e(x) |
Yexp — Le(xi) | X = x; = Yexp — Le(xi)€ = 0.
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