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Abstract—The trade-off between exploration and exploitation
is essential for reinforcement learning, where an agent needs to
be aware of when to explore for high reward policies and when
to exploit the optimal policy known so far. Parameter space ex-
ploration provides an elegant solution. As one of the principal
methods, injecting noise into the model parameters greatly im-
proves exploration. However, directly stretching the parameters
of the neural network into a vector and generating noise for this
vector ignore the structural information of the model. In this paper,
we aim to incorporate spatial information into weight matrices
and propose matrix-variate noise exploration, which exploits the
structural weight uncertainty brought by matrix variate noise to
enhance the stochasticity of the agent. Indeed, we construct a bridge
between the matrix noise exploration and probabilistic neural
networks, which theoretically explains the improved performance
of parameter space exploration. Extensive experiments have shown
that matrix variate noise exploration outperforms fully factorized
noisy exploration on most Atari tasks and Super Mario Bros tasks
and is competitive to the state-of-the-art methods.

Index Terms—Reinforcement learning, parameter space
exploration, weight uncertainty.

I. INTRODUCTION

R EINFORCEMENT learning (RL) has attracted significant
attention and achieved impressive progress in sequential

decision making problems [1]. An intelligent agent acts in an
unknown world through trial and error to learn optimal behav-
iors. During the interaction with the environment, the agents
should not only exploit their current knowledge to maximize
their rewards, but also explore other unknown possibilities to
find potential solutions. Efficient exploration is needed to guide
the agent in search of promising policies.

Recently, deep reinforcement learning has achieved amazing
success in numerous fields. Neural networks as a key component
have become an efficient function approximator to approximate
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the policy function or value function. Many popular algorithms
equipped with deep neural networks like deep Q network (DQN)
[2], and Asynchronous Advantage Actor Critic (A3C) [3] ac-
complish remarkable advance in game playing [4], robotics
locomotion [5], and many other fields. However, most of these
methods rely on simple exploration strategies. For instance,
DQN adopts a ε-greedy strategy where an agent takes random
actions with the probability of ε and acts greedily with the proba-
bility of1− ε. These heuristics exploration strategies are slightly
stodgy and perform poorly on some hard exploration tasks.
Furthermore, these inefficient mechanisms tend to consume lots
of interaction steps with the environment, which significantly
degrade the sample efficiency of the algorithm. Thus, it is
desirable and urgent to seek a more efficient exploration strategy
which performs state-dependent exploration.

In recent years, a variety of elaborate and sophisticated ex-
ploration algorithms have emerged and greatly addressed partial
difficulties faced by reinforcement learning [6]. Among these
methods, uncertainty estimation, as an indicator to quantify
surprise or novelty, consistently encourages agents to seek for
promising policies. Many of the exploration approaches based
on uncertainty estimation have been developed such as upper
confidence bounds (UCB) [7], curiosity exploration [6], and
so on. One leading principle of these solutions is to increase
the stochasticity of agents. Despite these successes, there still
exist a few limitations for current uncertainty-driven methods.
First, count-based methods like UCB perform well in tractable
MDPs but remain a challenge to high dimensional state space.
Nevertheless, pseudo-counts [8] can alleviate this issue but still
need an additional density estimation model. Second, most
curiosity-driven methods which make use of prediction errors as
novelty rewards, inevitably require additional modules as aux-
iliary tasks. For example, in [6], authors use neural networks to
train a forward dynamics model which estimates the difference
between the true next state st+1 and the predicted next state.

Taking account of uncertainty in the parameter space serves
as an elegant solution to the trade-off between exploration and
exploitation. There is a wealth of information hiding in the
parameter space. Undoubtedly, it is desired to exploit weight
uncertainty in a high-dimensional parameter space. How to
utilize weight uncertainty to explore and extract this information
is attracting growing research attention. In fact, parameter space
exploration has been well studied in the literature. Recent works
[9], [10] in parameter space exploration obtained significant
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performance improvements with minor modifications to the
original algorithms. Detailed ablation studies in [11] confirmed
that eliminating the Noisy Net from the Rainbow DQN causes
a substantial drop in several Atari games. However, directly
injecting diagonal Gaussian noise into parameters is clearly
insufficient due to ignoring the correlation between weights.

Another family of noise exploration is the evolution strategies
[12]. Evolutionary strategies construct a population by adding
noise to the model parameters, which can effectively explore
the environment. However, most evolution-based methods do
not consider the temporal structure of the agent and gradient
information, resulting in poor sample efficiency.

Today, neural networks (NN) can learn an expressive rep-
resentation from high dimensional input space. Yet, most of
the advances in neural networks have been made under a fre-
quentist perspective. For a well-trained NN, it usually gives a
deterministic output and the weights concentrate on a single
mode of the parameter space. This is mainly because the current
models still seek a point estimation of parameters. In supervised
learning, this may partially result in overfitting to the observed
data. Moreover, in RL, this implies that the parameter space
has not been fully explored, which directly affects the quality
of the learned policy. Especially for the tasks with inherent
stochasticity, this issue will be further exacerbated. It is therefore
essential to incorporate uncertainty into the parameter space.

In this paper, we propose a novel structural parameter space
noise exploration method, where structural weight uncertainty
brought by noise dramatically enhances the exploration. Our
method pays attention to the dependencies between weight vari-
ables in neural networks and learns rich information in parameter
space. In this work, we fully consider the characteristics featured
by neural networks, in which the noisy exploration is based on
the entire weight matrix of a layer in the neural network rather
than an isolated weight point. Overall, the main contribution of
our approach can be summarized as follows: first, we propose
a structural weight uncertainty exploration method where the
noise is generated via a matrix variate distribution. The matrix
variate noise is based on the dependencies between rows and
columns of the weight matrices. Second, we build a bridge
between the matrix noise exploration and probabilistic neural
networks, theoretically explaining the stochasticity brought by
noise exploration to explore more diverse areas in the parameter
space. Moreover, our approach allows for a natural balance
between exploration and exploitation. The matrix variate noise
is jointly learned with model weights, leading to a low un-
certainty in explored regions versus high uncertainty in less
explored regions. Third, the proposed method is evaluated on
environments with high dimensional state spaces such as Super
Mario Bros and Atari games. The results demonstrate that our
method significantly improves the effectiveness of exploration
and performs better than other baselines. Weight uncertainty
exploration guides the agent to explore and discover a number
of intriguing behaviors.

II. RELATED WORK

Efficient exploration is a fundamental and critical problem
for reinforcement learning, and there exist many challenging

issues waiting to be addressed. How to maintain the trade-off
between exploration and exploitation is still an open problem.
The agent needs to select the best behavior via interactions
with the environment, and explores new actions to discover
potentially better policies. We roughly divide recent literature
on exploration into three categories: action space exploration,
reward space exploration, and parameter space exploration, and
briefly introduce recent advances in the domain of exploration.

A. Action Space Exploration

Random exploration is easy to implement and widely used as a
general exploration strategy in a large number of reinforcement
learning approaches. For example, ε-greedy strategy is often
applied to the valued based methods [2], [13], and in continuous
control tasks, policy-based methods [14] explore the environ-
ment through random perturbations adding on the actions or
entropy regularization to prevent premature to a local optimal
policy. Boltzmann exploration uses a Boltzmann distribution
to select the actions where the action is proportional to the Q
value computed according to a softmax distribution. Apart from
these, the previous work [15] combines model-free reinforce-
ment learning and imitation learning which makes use of past
good experiences for self-imitation. Self-imitation learning uses
past good state-action pairs and indirectly promotes a positive
exploration effect.

B. Reward Space Exploration

A prevalent solution in reward space exploration is reward
shaping. The external reward of the task has certain delayed
feedback and can be deceptive in many cases. It is intuitive
to augment intrinsic rewards as a bonus to facilitate better
exploration. A number of works [8], [16]–[18] have been devel-
oped from different perspectives as intrinsic rewards to improve
exploration. Count-based exploration is well studied in the liter-
ature. Recent works [6], [19] inspired by psychology, explore the
world through curiosity as an intrinsic reward. Authors address
exploration by curiosity to guide agents finding novel states.

Another category is to utilize the intrinsic motivation of
the agent to explore the environment [6]. Recent works use
prediction error as curiosity to explore the environment, which
requires building a model to estimate the difference between
the value of the next state and the current state. However, most
of these techniques require to design specific structure, and is
challenging to scale to high dimensional state space.

C. Parameter Space Exploration

The idea of injecting noise into model’s parameters is not
new. It can go back at least to [20], which treats injection
noise as a mutation operator to optimize the function. Recently,
searching in parameter space to find a good policy is a pretty
intuitive approach, and has been studied extensively in [9],
[10], [21], [22]. NoisyNet [10] proposes fully factorized weight
noise and achieved good performance on DQN and its variants.
Moreover, concurrent work [9] uses a heuristics approach to
adjust the variance of injected Gaussian distribution to improve
exploration. The work of [12] considers evolutionary strategy
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Fig. 1. Schematic representation of deterministic neural network(left) and
fully factorized noise exploration (right). Isotropic Gaussian noise is added to
each weight of the neural network.

as an alternative to reinforcement learning to solve sequential
decision problems. Authors in [21] integrate parameter explo-
ration on policy gradient methods by sampling policy parameters
from parameter space. Indeed, the aforementioned methods all
adopt the isotropic Gaussian distribution to generate noise and
ignore the correlation between parameters. Due to the lack of
consideration of the structure information, the exploration power
of these methods is significantly diminished. Our matrix variate
noise is based on the dependencies between rows and columns
of the weight matrices and focuses on structural information
in the parameter space. This is the major difference between
our method and previous methods. In addition, our approach is
closely related to the probabilistic neural network. A wide range
of probabilistic neural networks have been studied in the field
of Bayesian neural networks [23]–[26].

III. BACKGROUND

A. Reinforcement Learning

The heart of reinforcement learning is to acquire an optimal
policy through interactions with the environment via a reward
function. The environment is generally modeled as Markov
Decision Processes (MDPs) which is typically described by a
tuple M = (S,A,R,P, γ). S is the state space and A is the
action space. In this paper, we assume that S is super large but
finite. R is the reward function and P is the dynamic transition
probability. p(s′|s, at) describes the transition probability from
s to s′ when action at is taken at time step t. γ ∈ (0, 1) is the
discount factor. The policy π(a|s) is a probability distribution
conditioned on the states, which maps a state to an action. At each
discrete time step t, the agent selects the action at in st according
to its current policy and acts the action to the environment.
After the environment receives the action at in state st, the
environment returns a scalar reward r(st, at) and moves to the
next state st+1. Then the agent continues this process until it
encounters a terminal state. The objective function of RL is
formulated as

max
θP

Eπ(st;θP )

[
Σtγ

tr(st, at)
]
, (1)

where the goal of the agent is to find a parameterized policy to
maximize the expected cumulative discounted rewards defined
in (1). Moreover, the cumulative return is usually used as an
indicator to assess the quality of a policy.

In the framework of MDP, the problem is transformed to learn
the value of each action at each state, namely state-action value
Q(s, a). The optimal state-action value can be learned by Q-
learning [27] algorithm which is an off-policy algorithm based
on dynamic programming. In valued-based method, Q-learning
[27], as a very popular approach, is updated iteratively by a
temporal difference form defined as follows:

Qπ(s, a) = Q(s, a) + α(r + γmax
a

Q(st+1, a)−Q(s, a)),

(2)
where α is a step size. Q-learning works well and is guaranteed
to converge to an optimal policy under tabular cases. The final
optimal policy is the actions with the highest value.

However, tabular Q-learning is still not able to tackle high-
dimensional problems. Mnih et al. [2] proposed deep Q net-
work (DQN). DQN is the first deep reinforcement learning
algorithm incorporating deep neural networks that achieves
human-level performance on high-dimensional problems such
as Atari games. The Q function is optimized by minimizing the
Bellman residual expressed as follows:

Es,a∼ρ(·)
[
(yi −Q (s, a; θi))

2
]
, (3)

where y = r(s, a) + γmaxa′ Q(s′, a′; θ′). θ is the parameters of
main network and θ′ is the frozen parameters of target network
which periodically copies from the main network.

B. Noisy Exploration

The ability to handle uncertainty is critical for RL algorithms.
The uncertainty originates from the unknown environment dy-
namics and is reflected on the observed data. [10] proposed
NoisyNet to promote exploration, which added parametric noise
to the weights of the neural network. NoisyNet explores the
environment by perturbing in the parameter space, and therefore
injecting stochasticity to the policy. In NoisyNet, the original
linear layer is replaced by noisy layer and each weight in the
model is imposed on a zero-mean Gaussian noise. The noisy
layer is represented as follows:

y
def
= (μw + σw � εw)x+ μb + σb � εb, (4)

where w, b are weights and biases of the neural network respec-
tively and x is the input of the current layer. σ is the standard
deviation of Gaussian noise, which is learned jointly with the
weight. ε are unit Gaussian random variables and � means
element-wise multiplication.

IV. METHOD

Fully factorized noise exploration, depicted in Fig. 1, main-
tains a perturbation factor for each parameter of the model, which
directly stretches up the parameters of neural network into a
vector, and then samples Gaussian noise for this vector to explore
the parameter space. One major limitation is that fully factorized
noise disregards the structural information in parameters. As
we know, the parameters of each layer in the neural network
are weight matrices. Stretching such a weight matrix into a
vector would lose its spatial and structural information, and
independent isotropic Gaussian noise ignores the correlation
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between parameters. A deep motivation of this paper is to
incorporate structural information from neural networks into
parameter space exploration. Moreover, fully factorized noise
doubles the number of parameters of the neural network. The
dimension of the perturbation factor grows polynomially with
respect to the number of neurons of the neural network. A very
intuitive approach to ameliorate this issue is to consider the entire
weight matrix instead of isolated parameters.

In this paper, we make use of matrix variate noise to generate
parameter space noise, which considers the specific structures of
neural networks. The overall noise exploration can be formulated
as follows:

W̃ = W + ε, (5)

where W is the weight matrix of the neural network and ε
is the noise oriented for matrix exploration. The dependencies
between parameters are brought in by taking into account the
row and column covariance of weight matrices. W̃ is the weight
after adding noise, which brings in weight uncertainty. Structural
uncertainty carried by matrix variate noise can better capture
under-explored areas. The matrix variate distribution is a prob-
ability distribution over matrices variable. In particular, we take
the matrix variate Gaussian as an instance to illustrate how to
perform parameter space exploration. In addition, the matrix
variate can be extended to other distributions and is not limited
to the Gaussian distribution. In general, for a random matrix
X ∈ Rm×n, if it is distributed according to a matrix variate
Gaussian, the p.d.f. of random matrix X is denoted in

p(X) = MN (M,U,V)

=
exp

(− 1
2 tr

[
V−1(W −M)TU−1(W −M)

])

(2π)np/2|V|n/2|U|n/2 . (6)

MN refers to the matrix variate Gaussian distribution, where
MN is the abbreviation of matrix normal. M ∈ Rm×n corre-
sponds to its mean term and has the same size as the random
matrix X. U ∈ Rm×m and V ∈ Rn×n are the matrices that
govern the covariance of rows and columns of M respectively. In
this way, we can explicitly model the correlations between rows
and columns of the weight matrices of the neural network and
even the relation with the input of each layer. Uncertainty from
the structural noise brings stochasticity to the learned behavior
and avoids premature convergence.

An immediate challenge is how to make the noise coadap-
tation with weights of the neural network. We use the repa-
rameterization trick in [28], which makes the structural noise
jointly learned with weights matrices. The randomness inherent
in the weight noise is transformed into an auxiliary random
matrix variableE, and the parameters of matrix variate Gaussian
are converted to be deterministic and can be learned jointly
with the weights in the neural network. For example, for a
scalar x ∼ N (μ, σ2), a reparameterization is x = μ+ σεwhere
ε ∼ N (0, 1). We specifically generalize it to the matrix noise:

ε(l) = 0+U
1
2E(l)V

1
2

E ∼ MN (0, I, I) ( i.e. Eij ∼ N (0, 1)) , (7)

where ε(l) is the structural noise generated for l-th layer and
E is the auxiliary matrix variable. Each element Eij follows a
standard Normal distribution.

A major prerequisite for row covariance and column covari-
ance matrices is that the matrices need to be symmetric and
positive definite. In order to solve this problem, instead of learn-
ing the parameters of U and V directly, we do a decomposition of
the covariance matrices. Note that for any real matrix L, L ·LT

is guaranteed to be semi-positive definite. Therefore, we turn to
learn the parameters of the decomposition matrices of the row
and column covariance of the weight matrices.

The matrix variate noise is zero-mean and row and column
covariances are learned from data, which reflects the dependen-
cies among the weight matrices. Applying a matrix Gaussian
distribution noise with zero-mean to a weight matrix with value
W, the original weight matrix is transferred to a matrix Gaussian
distribution:

ε ∼ MN (0,U(l),V(l)) =⇒ W̃ ∼ MN (W,U(l),V(l)).
(8)

W̃ is the weight matrix after noise injection, which follows
a matrix Gaussian distribution and W is the mean value of
this distribution. When adding noise to each layer of the neu-
ral network, it is equivalent to sampling the weights from a
MN (W,U(l),V(l)) distribution. Equipped with matrix variate
noise, the original weight matrix is transferred to a probability
layer.

Deterministic neural network weights are injected with noise
and the weights thus contain uncertainty. Our method builds
on the weight matrix noise exploration, introducing structured
uncertainty estimation in the parameter space. In value-based
DRL, the action-value function, Q(s, a), is usually represented
by a neural network. In our work, the Q-value of each action
Q(s, a) is predicted by a neural network with weight uncertainty.
st is fed into the current Q network and at is the action taken
by the agent at time step t. The Q network is parameterized by
θ with structural matrix noise injection. At each step, the final
action is chosen based on the noisy prediction of the maximum
Q value. The matrix noise exploration poses randomness on the
weights and prevents excessively greedy action selection. The
matrix variate noise is learnable and we cast the noise exploration
as an optimization problem that can be trained through back-
propagation. We refer to update theQ function by one-step noisy
Bellman equation. Note that the loss function is defined in

L̄(ζ) = E [r + γmaxb∈A Q (y, b, ε′; θ−)−Q(x, a, ε; θ)]
2
,
(9)

in which ε is the corresponding matrix variate noise.
In the previous claim, we describe how to generate a struc-

tural parameter-based matrix noise. Armed with matrix noise
exploration, we bridge our approach with the probability neural
network. We maintain a fully probabilistic distribution over
the model parameters rather than making a point estimate. We
denote some symbols notation, where bold lowercase letters x
are column vectors and capital bold lettersW represent matrices.
A transpose of a variable x is expressed by xT . Here we first
consider the linear transformation of one layer in the neural
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Fig. 2. Screenshots of the agent trained by matrix variate noise playing Mario. In two different levels, the agent has successfully passed all the obstacles and
reached the flag.

network, which is usually defined as y = wx+ b. For the sake
of convenience, we extraly augment a dimension to the feature
x. Then we can absorb the bias into the weight, and the linear
transformation is denoted as y = wTx. Here w is (w, b) and x
is (x, 1).

Fortunately, the nice properties in multivariate Gaussian vari-
ables can all be generalized to matrix Gaussians [29][30]. The
linear transformation of a matrix variable and a matrix Gaussian
distribution remains a matrix variate Gaussian, and vice versa.
In (10), W ∼ MN (M,U,V), where M is the mean value of
this matrix distribution. The multiplication of a random matrix
A with W still follows a matrix Gaussian distribution:

B � AW ∼ MN (
AM,AUA�,V

)
. (10)

In this section, we make a connection between our method
and probabilistic neural network. The Q value can be viewed as
a probabilistic model, P (Q(s, a)|s, a). Structural uncertainty
in weights allows more variation in decision making, which
naturally promotes exploration. For clarity, we first consider a
simple case. We assume that our deep Q network contains only
one hidden layer and one output layer. Let X be the inputs to
deep Q network, which are states sampled from the replay buffer
with dimensions N ×m. N is the size of the minibatch and m
is the dimension of the state st’s feature. Then, we denote W1 as
the first weight matrix,W2 as the second weight matrix. With our
structural matrix noise injection, the weight matrix W̃ follows
a Gaussian matrix distribution:

W̃1 ∼ MN (W1,U
(l)
1 ,V

(l)
1 );W̃2 ∼ MN (W2,U

(l)
2 ,V

(l)
2 ).

All the weights in our model are expressed in terms of proba-
bility distributions, as opposed to having a fixed value. Moreover,
the matrix distribution can carry more structural information. For
the feedforward propagation of the deep Q network, it can be
expressed as follows:

B = X · W̃1 (11)

Q = f(B) · W̃2 (12)

B denotes the result of the first weight matrix layer and
f is a nonlinear activation function. Q is the output vector
of deep Q net, and each entry in Q represents the Q(s, a)
value of each action at that state. Since W̃1,W̃2 all follow
matrix Gaussian distribution, according to (10), the output of
feedforward network also follows matrix Gaussian distribution

as

B | X ∼ MN
(
XW1,XU

(l)
1 XT ,V

(l)
1

)
(13)

Q | B ∼ MN
(
f(B)W2, f(B)U

(l)
2 f(B)T ,V

(l)
2

)
. (14)

The output B of the middle layer is matrix variate Gaussian
distribution conditioned on the input x. Likewise, the final
output is a matrix variate Gaussian distribution dependent on
the output of the middle layer. Note that all row covariances
are input-dependent, indicating that matrix noise exploration is
a state-dependent exploration. As we can see, the probabilistic
form of the output can be represented in (14). Linear transforma-
tions between MVG distributions are still MVG distributions.
Our method shows that the Q value in our deep Q network
explores the environment through weight uncertainty, rather than
a deterministic value at a given moment. The resulting state-
action value Q(s, a) is a matrix variate Gaussian distribution
conditioned on current state st. In (14), the row covariance of
output is the inner product of inputs and covariance of current
weight matrix. This implicitly connects the correlation between
the input and hidden units in the neural network and yields
state-dependent exploration.

Now consider a complex case defined in

ˆQ(s, a) = fL ◦ fL−1 ◦ · · · ◦ f1 (si) , (15)

where the neural network has l layers. ◦ means function compo-
sition where fL ◦ fL−1 represents fL is evaluated on the output
of fL−1. We impose the matrix variate noise on each layer, and
eventually the Q value depends on the uncertainty brought by
each layer of noise. Our approach is essentially an uncertainty
driven method to exploration. Uncertainty drives the agent to
explore areas with high uncertainty. As more observations are
collected and the environment is better understood, the cor-
responding uncertainty decreases and then drives the agent to
explore more uncertain regions. The mean of the weight matrix
gains more information about the environment, and the noise in-
jection increases the stochasticity of agents. Additionally, matrix
based noise exploration makes it easier to dig out the correlation
among the weights and discover information sharing between
the parameters. In general, the probabilistic representation of
weight matrix noise exploration could not only explain the
uncertainty estimation of the value of actions, but also capture
more information gain about the environment.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2023 at 10:18:11 UTC from IEEE Xplore.  Restrictions apply. 



1030 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 4, AUGUST 2023

Fig. 3. Training curves of matrix variate exploration with other exploration baselines on Super Mario Bros tasks. The y-axis shows the episode rewards and
x-axis shows steps. All curves are averaged with 4 random seeds.

V. EXPERIMENT

In order to verify the effectiveness of exploration, in this
section, we empirically investigate how exploration affects the
quality of learned policies and sample efficiency. We com-
pare our approach with the classical action space exploration
and parameter space exploration methods on a suite of Super
Mario Bros tasks and further test it against state-of-the-art
deep reinforcement learning methods on the famous Atari 2600
benchmark. The experiments are conducted on fifteen of all the
Atari video games. We demonstrate that our weight uncertainty
strategy enables the agent to make progress in all four levels of
Mario. The results show that it outperforms the baselines. On
all tasks, agents learn to play the games from the pixels.

Our matrix-variate parameter space exploration can be inte-
grated with a value-based method or policy-based method. In
this paper, we couple it with Deep Q network (DQN).

A. Environment

In order to verify the robustness of the algorithm, we evaluate
the exploration ability of our method on different scenarios.
We select Super Mario Bros tasks [31] and Atari 2600 games
[32] as our testbed. Atari is a popular RL benchmark, which
provides a platform for researchers to compare and evaluate
the performance of RL algorithms. Super Mario Bros tasks
(SMO) is a 2-D video game, which is a long horizon decision
making and temporal extended task. For both tasks, deep RL
agent needs to perceive from the pixel inputs. In the Mario
Bros tasks, the agent goes through levels from left to right. In
the process of advancing, the agent should avoid encountering
monsters, while collecting gold coins as much as possible. Once
a collision with a monster occurs, the game terminates. When
picking up jewels, the agent will be rewarded. Also, killing
monsters will be rewarded. The final rewards are also related to
the time the agent takes to reach the flag. The shorter the time,
the higher the reward. In the Mario Bros tasks, we considered
4 tasks including the day world and night world. The action
space of SMO contains move forward, move backward and
jump, etc. To allow for more diverse strategies to be explored,
we allow the agent to take multiple actions at the same time.
It is consistent with the players using joysticks in the game
to press multiple buttons simultaneously. All experiments were
conducted in OpenAI Gym [33] which is a general platform for
evaluating RL algorithms. We then investigate how to exploit
such structural weight uncertainty to drive exploration and test
it on a nonlinear regression problem.

Fig. 4. Comparison of the number of interaction steps between the agent and
environment with and without the matrix variate noise at 30 minutes during the
training phase and the inference phase, respectively.

B. Ablation Studies

In this section, we conduct extensive experiments to validate
the effectiveness of our matrix variate noise exploration. Firstly,
the time performance of the algorithm is critical. In order to
evaluate the impact of our matrix variate noise exploration on the
time performance of the algorithm, we investigate the training
and inference time of our model with and without the matrix
variate noise. In Fig. 4, we present that the number of steps to
interact with the environment in 30 minutes with and without
matrix variate noise exploration in the training and inference
phases, respectively. The experiments are performed on a ma-
chine with a 20-core Intel i9 CPU and NVIDIA 3070 GPU.
We can observe that during the training phase the algorithm
equipping matrix variate noise interacts with the environment
for 1.01× 105 steps in 30 min, and for 1.25× 105 steps without
applying matrix noise. In the inference stage, the algorithm
interacts with the environment with and without matrix variate
noise for 2.04× 105 and 2.1× 105 steps in 30 min, respectively.
Due to additional learning of the matrix variate noise exploration
during the training process, the speed of our approach is a bit
slower. However, in the inference stage, the speed of the two
methods is similar. We also compare the cumulative rewards
of the algorithms over time in three Mario tasks. In Fig. 5, we
discover that although more samples can be collected at the same
timestep by using method without matrix variate noise, the agent
can only find a suboptimal policy due to the lack of effective
exploration. Moreover, under the same timestep, a better policy
can be learned by using the matrix variate noise.
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Fig. 5. Performance comparisons between our approach and the variant without using matrix variate noise. We can observe that given the same timesteps, our
approach achieves higher rewards.

Then, in Fig. 3, we compare our approach with ε-greedy
exploration, fully noise factorized noise exploration, and ran-
dom exploration methods. Our matrix variate noise exploration
outperforms ε-greedy by a large margin on Mario tasks and
achieves better performance with fully factorized noise explo-
ration method in the end. The driving force behind exploration
in our approach mainly relies on uncertainty estimation. The
uncertainty of events can be defined in two types: epistemic
and aleatoric [34]. Aleatoric uncertainty primarily stems from
randomness inherent in the environment. Uncertainty estimation
is tightly interleaved with efficient exploration in reinforcement
learning. To better explain the results of our exploration method,
we visualized the effect of uncertainty estimation on the toy
example for matrix variate noise exploration and deterministic
neural network, respectively. Fig. 6 shows the exploration area
driven by our matrix variate noise on the 1-dimensional dataset.
The uncertainty is relatively low in the regions where data points
are dense. In contrast, the model’s uncertainty estimation is large
where data is sparse. Accordingly, in order to reduce uncertainty,
this requires collecting more training samples in this region.
Consequently, uncertainty guides our model to discover novel
states. In reinforcement learning, this implies exploring more
previously unseen states. The uncertainty learned by our method
can also be viewed as a kind of curiosity.

C. Results and Analysis

In this section, we have comprehensively analyzed the results
of our experiments. In Fig. 7, the plots show the learning progress
in Atari environments. We compare our method with DQN and
Noisy-DQN. x-axis means training steps and y-axis means the
cumulative rewards. Each curve is averaged across independent
runs with different random seeds. The solid line shows the
mean of game scores and shaded area represents the variance
of each run. For clarity of presentation, each plot in the figure is
smoothed with a window size of 10.

All methods have been trained over a long period of training
steps with 20 M steps. We can see that our matrix variate noise
exploration method performs better than baselines and learns
faster on most tasks. We conjecture that matrix variate noise can
incorporate the structural information in weight matrix and col-
lect more informative training samples. In riverraid, videopinball
tasks, fully factorized noise suffers from falling in local optimal.
In contrast, our method does not present premature convergence.
We can also observe that matrix variate exploration learns slowly
initially in road runner environment, and achieves competitive
performance on 10 M time steps. Although, we can still see that

Fig. 6. A comparison between our matrix variate noise exploration and tra-
ditional deterministic neural network. Top: prediction from our matrix variate
noise exploration. The shaded area is the uncertainty interval. Wide interval
indicates high estimated uncertainty. Note that in areas with a lot of data, the
uncertainty is low, and conversely in regions with little data, the uncertainty is
high. Down: prediction from the traditional neural network. NN outputs a point
estimation of the data, which does not reflect the uncertainty clearly.

our method is slightly weaker than baselines in zaxxon task. In
Fig. 2, we demonstrate that weight uncertainty drives our agent
to experience more parts of the game and execute a variety of
actions to the environment. Then the agent learns and identifies
which specific behavior pattern is beneficial for achieving higher
rewards.

In each task, our agents learn to play the game from scratch.
To avoid trapping in suboptimal policy, this requires the algo-
rithm to have sufficient exploration capabilities to explore more
regions of the game space.
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Fig. 7. Training curves of MVE-DQN with DQN and Noisy DQN on Atari tasks.

In Super Mario Bros tasks, the agent automatically discovers
running from the left side to the right side. Interestingly, the
agent itself finds several novel behaviors to accelerate passing
the games levels or to avoid fatal events. For instance, the agent
learns to escape or kill enemies, as well as cross obstacles and
collect gold coins. We note that our method performs better
in Super Mario Bros than other action or parameter space

exploration baselines. In level-2, there exist more different ob-
stacle structures and various enemies. The agent is likely to walk
on mushrooms or get stuck in obstacles. Hence, the algorithm
needs to explore more options to avoid these traps to reach the
flag. Other baselines are comparatively inefficient and do not
take into account weight uncertainty. The parameters of classical
NN are deterministic and fail to reflect the uncertainty of the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2023 at 10:18:11 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: STRUCTURAL PARAMETER SPACE EXPLORATION FOR REINFORCEMENT LEARNING VIA A MATRIX VARIATE DISTRIBUTION 1033

TABLE I
SCORES FOR MVE-DQN WITH DQN, NOISY-DQN ON ATARI GAMES

parameters. The regions are not well explored where data is
sparse. Empirically, they require more training samples to learn
to dodge or kill enemies.

The agent trained by our matrix variate noise consistently
receives rewards during the interaction with the environment.
However, it is still challenging to effectively exploit extrinsic
rewards to discover novel patterns. The agent should not only
learn some basic skills such as jumping and walking, but also
more complex skills such as collecting coins and dodging en-
emies. In Fig. 2, there exist many successive barriers in this
level. For an agent that adopts ε-greedy strategy, it is likely to
hit boulders and get stuck here. When ε was very small, it takes
many attempts to jump over. In contrast to our approach, when
the agent approaches the boulders, it itself explores a specific
sequence of key presses to fly up and jump over the successive
obstacles.

D. Implementation Details

For all Super Mario and Atari tasks, we apply the same neural
network architecture and hyperparameter configuration. Since
both environments are pixel-based tasks, we use a convolutional
neural network. Our CNN contains three convolutional layers
and two fully connected layers and uses ReLU activation
functions. In order to satisfy the Markov property, the state
consists of the current frame with three previous frames.
The parameters of neural network are optimized with Adam
optimizer [35] with a learning rate of 1e-4. In our experiments,
we found Adam performs better than RMSProp. The selection
of learning rate in Adam is not as sensitive as RMSProp. In the
original setup, our agent is running on a single CPU machine, and
a 10 M steps training with Atari tasks over more than 10 days. To
speed up training, we utilize multi-core CPUs and use vectorized
environment mechanisms. The agent interacts asynchronously
with multiple environments in parallel and an entire training of
20 M steps takes approximately 13 hours of wall-clock time. Our
implementation is based on OpenAI Spinningup 1 and the code
is available at https://github.com/WangShaoSUN/Structural-
Parameter-Space-Exploration-for-Reinforcement-Learning-
via-a-Matrix-Variate-Distribution. For DQN agents, we follow
the procedure in [2] which utilizes an anneal ε decreasing

1https://github.com/openai/spinningup

from 1 to 0.1 during the first 1 M steps. In our matrix variate
noise method, in order to reflect the exploration ability of our
approach, we adopt a faster annealing ε which reduces to 0.01 in
the first 20 K steps. In practice, it is computationally expensive
and memory intensive to learn the entire parameters of rows
and columns covariance matrix. For simplicity, we utilize a
diagonal approximation to the covariance matrix. In an m× n
weight matrix, we only need m+ n perturbation factor to
govern the two diagonal matrices. In contrast, a fully factorized
Gaussian exploration requires m× n parameters to generate
the exploration noise per layer. Our matrix noise exploration
greatly reduces the number of parameters. In fact, we found
that the approximate matrix noise exploration performs well.

VI. DISCUSSION

In this paper, we focus on integrating the matrix variate
approach with a value-based method, which can also benefit
policy-based RL algorithms. We compare our method with
DQN, Noisy DQN, and human players. Detailed comparisons
are shown in Table I which summarizes the results of several
DQN methods. To ensure a fair comparison, we use the data of
DQN and Noisy DQN from the original paper [10]. The highest
score of each game is indicated by bold font. The results show
that our method performs significantly better than Noisy DQN.
Statistically, our method performs better than Noisy DQN on
an average improvement of 48% on Atari games (13 out of 15)
and outperforms DQN by a large margin of 98%. Concretely,
our approach surpasses human players in nine environments
and outperforms the baselines in more than two-thirds of these
tasks. In the tasks like gopher, up n down, and riverraid, our
method exceeds Noisy DQN by 124.8%, 41.9%, and 19.8%,
respectively. These results demonstrate that our approach scales
better than fully factorized noise exploration on large-scale state
space problems and make more efficient exploration. We find
that good exploration relies heavily on structured information
in the parameter space. Structural exploration makes the agent
more flexible in the environment and more likely to achieve
high scores. Our matrix variate noise exploration incentivizes
the agent to explore novel states, which brings positive feedback
to the environment and results in more rewards. In contrast,
we find that our compared strategies are prone to fall into
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sub-optimal policies. For example, deterministic policies tend
to trap in some specific states. In the Mario game, the agent
trained by ε-greedy is easy to get stuck in the water pipe. In the
implementation of our DQN agent, we suggest that the annealing
epsilon should be gradually decreased to a threshold value to
ensure adequate exploration. It is also observed that too much
intensive exploitation during the early stage of training process
can affect the final performance. In Venture, DQN fails to handle
this task well. Note that fully factorized noise exploration does
not make progress in the early stage while our matrix-variate
noise exploration learns quickly.

VII. CONCLUSION

In this work, we concentrate on incorporating structural in-
formation into parameter space and make better use of weight
uncertainty to explore the environment. We propose a novel
parameter space exploration approach called matrix variate
noise exploration (MVE). Rather than an isolated view on each
weight, our method treats the entire weight matrix as a whole and
utilizes the matrix variate noise to explore. Experimental results
show that our approach achieves state-of-the-art performance
against other variants of DQN and dramatically improves perfor-
mance compared to other action and parameter space exploration
baselines.

In the era of deep reinforcement learning, the value function or
policy function is generally parameterized by a neural network.
Models of neural networks often contain millions of parameters
[36], and their parameter spaces are often very complex. How
to explore in such a huge parameter space is still a challenging
problem. Our future work is to introduce curiosity exploration
into the parameter space and matrix noise exploration can be
complementary to other reinforcement learning methods.
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