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When Transformer Meets Robotic Grasping: Exploits
Context for Efficient Grasp Detection

Shaochen Wang , Zhangli Zhou, and Zhen Kan , Senior Member, IEEE

Abstract—In this letter, we present a transformer-based architec-
ture, namely TF-Grasp, for robotic grasp detection. The developed
TF-Grasp framework has two elaborate designs making it well
suitable for visual grasping tasks. The first key design is that
we adopt the local window attention to capture local contextual
information and detailed features of graspable objects. Then, we
apply the cross window attention to model the long-term depen-
dencies between distant pixels. Object knowledge, environmental
configuration, and relationships between different visual entities
are aggregated for subsequent grasp detection. The second key
design is that we build a hierarchical encoder-decoder architec-
ture with skip-connections, delivering shallow features from the
encoder to decoder to enable a multi-scale feature fusion. Due to
the powerful attention mechanism, TF-Grasp can simultaneously
obtain the local information (i.e., the contours of objects), and
model long-term connections such as the relationships between
distinct visual concepts in clutter. Extensive computational exper-
iments demonstrate that TF-Grasp achieves competitive results
versus state-of-art grasping convolutional models and attains a
higher accuracy of 97.99% and 94.6% on Cornell and Jacquard
grasping datasets, respectively. Real-world experiments using a
7DoF Franka Emika Panda robot also demonstrate its capability of
grasping unseen objects in a variety of scenarios. The code is avail-
able at https://github.com/WangShaoSUN/grasp-transformer.

Index Terms—Grasp detection, robotic grasping, vision
transformer.

I. INTRODUCTION

DATA-DRIVEN methodologies such as deep learning have
become the mainstream methods for robotic visual sensing

tasks such as indoor localization [1], trajectory prediction [2],
and robotic manipulation [3], [4], since they require less hand-
crafted feature engineering and can be extended to many com-
plex tasks. In recent years, as visual sensing is increasingly being
used in manufacturing, industry, and medical care, growing
research is devoted to developing advanced robot’s perception
abilities. A typical application of visual sensing is the robotic
grasp detection, where the images of objects are used to infer
the grasping pose. Considering a grasping task of manipulating a
wide diversity of objects, to find the graspable regions, the robots
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have to concentrate on not only partial geometric information
but also the entire visual appearance of the object. Particularly in
unstructured and cluttered environments, dealing with variations
in shape and position (e.g., occlusion) and also the spatial
relationship with other objects are critical to the performance
of grasp detection. Therefore, this work is particularly moti-
vated to investigate grasp detection that takes into account both
local neighbor pixels and long-distance relationships in spatial
dimensions.

Most modern grasp detectors [3], [5] are based on con-
volutional neural networks (CNNs) which emerge as the de
facto standard for processing visual robotic grasping. However,
current CNNs are composed of individual convolution kernels,
which are more inclined to concentrate on local level informa-
tion. Also, the convolution kernels in a layer of CNN are viewed
as independent counterparts without mutual information fusion.
Generally, to maintain a large receptive field, CNNs have to
repeatedly stack convolutional layers, which reduce the spatial
resolution and inevitably results in the loss of global details and
degraded performance.

Recently, as a novel approach to handle natural language
processing and computer vision, the transformer [6]–[8] demon-
strates remarkable success. The widely adopted attention mech-
anisms [6] of transformers in sequence modeling provide an el-
egant resolution that can better convey the fusion of information
across global sequences. In fact, as robots are deployed in more
and more diverse applications such as industrial assembly lines
and smart home, the sensing capacity of robotic systems needs to
be enriched, not only in local regions, but also in global interac-
tion. Especially when robots frequently interact with objects in
the environment, the awareness of global attention is particularly
important with respect to safety and reliability. However, most
vision transformers are designed for image classification on
natural images processing tasks. Few of them are specifically
built for robotic tasks.

In this letter, we present a transformer-based visual grasp
detection framework, namely TF-Grasp, which leverages the
fact that the attention can better aggregate information across
the entire input sequences to obtain an improved global repre-
sentation. More specifically, the information within independent
image patches is bridged via self-attention and the encoder
in our framework captures these multi-scale low-level fea-
tures. The decoder incorporates the high-level features through
long-range spatial dependencies to construct the final grasping
pose. We provide detailed empirical evidence to show that our
grasping transformer performs reasonably well on popular
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grasping testbeds, e.g., Cornell and Jacquard grasping datasets.
The experimental results demonstrate that the transformer archi-
tecture plays an integral role in generating appropriate grasping
poses by learning local and global features from different parts
of each object. The vision transformer-based grasp detection
works well on the real robotic system and shows promising
generalization to unseen objects. In addition, our TF-Grasp can
generate the required grasping poses for parallel grippers in a
single forward pass of the network.

In a nutshell, the contributions of this letter can be summarised
in three folds:
� This work presents a novel and neat transformer archi-

tecture for visual robotic grasping tasks. To the best of our
knowledge, it is one of the first attempts considering vision
transformers in grasp detection tasks.

� We consider simultaneous fusion of local and global fea-
tures and redesign the classical ViT framework for robotic
visual sensing tasks.

� Exhaustive experiments are conducted to show the advan-
tages of the transformer-based robotic perception frame-
work. The experimental results demonstrate that our
model achieves improved performance on popular grasp-
ing datasets compared to the state-of-the-art methods. We
further show that our grasping transformer can generate
appropriate grasping poses for known or unknown objects
in either single or cluttered environments.

II. RELATED WORK

This section reviews recent advances in the field of robotic
grasping and briefly describes the progress of transformers in
different areas.

A. Grasp Detection

The ability to locate the object position and determine the
appropriate grasping pose is crucial to stable and robust robotic
grasping. Grasp detection, as the name implies, uses the image
captured from the camera to infer the grasping pose for the robot
manipulator. Using geometry-driven methods, earlier works [9],
[10] mainly focus on analyzing the contours of objects to identify
grasping points. A common assumption in these methods is
that the geometric model of the object is always available.
However, preparing the CAD models for graspable objects is
time-consuming and impractical for real-time implementation.
Recently, deep learning based methods have been successfully
applied in visual grasping tasks [3], [5], [11]–[13]. The work
of [14] is one of the earliest works that introduces deep neural
networks to grasp detection via a two-stage strategy where the
first stage finds exhaustive possible grasping candidates and the
second stage evaluates the quality of these grasp candidates
to identify the best one. However, due to numerous grasping
proposals, the method in [14] suffers from relatively slow speed.
Many recent works utilize convolutional neural networks to
generate bounding box proposals to estimate the grasp pose
of objects. Redmon et al. [5] employed an Alexnet-like CNN
architecture to regress grasping poses. Kumra et al. [3] explored

the use of ResNet-50 as a backbone to incorporate multimodal
including depth and RGB information to further improve the
grasp performance. Besides, CNN-based grasp quality net-
works [15], [16] were proposed to evaluate and predict the
robustness of grasp candidates. In the same line, GG-CNN [17]
developed a fully convolutional neural network to perform
grasp detection, which provides a lightweight and real-time
solution for visual grasping. Currently, most of the existing
grasp detection methods are still heavily inspired by computer
vision techniques such as object recognition, object detection,
etc. In contrast to classical visual problems where the detected
objects are usually well-defined instances in the scene, in grasp
detection, the grasp configuration to be generated is continuous,
which implies an infinite number of possible grasp options. This
places significant challenges in feature extraction to identify a
valid grasp configuration from all possible candidates. We argue
that the loss of long-term dependencies in feature extraction
is a major drawback of current CNNs based grasp detection
methods.

B. Transformer

Transformer [6] first emerged in machine translation and is
rapidly establishing itself as a new paradigm in natural lan-
guage processing due to its potential to model global infor-
mation, which learns the high quality features by considering
the whole context. Thanks to its excellent global representation
and friendly parallel computation, the transformer is competitive
in long sequences modeling and gradually replaces RNNs and
CNNs.

Motivated by the remarkable success of transformers achieved
in natural language processing, more and more researchers are
interested in the employment of attention mechanisms in visual
tasks. At present, the transformer has been successfully applied
to image classification, object detection, and segmentation tasks.
However, there still exist many challenges. First, visual signals
and word tokens are very different on many scales. Second,
the high dimension of pixel-level information may introduce
significant computational complexity.

More recently, ViT [7] was presented as a transformer model
to tackle natural images recognition, which splits the image
into non-overlapping patches. The authors in [8] proposed a
hierarchical ViT called Swin-Transformer by calculating the
local self-attention with shifted windows. In contrast to the
quadratic computation complexity of self-attention in ViT, Swin-
Transformer achieves a linear complexity. Inspired by this fash-
ion, many researchers have tried to apply transformer to other
fields. For example, TransUNet [18] combines transformer and
Unet [19] for medical image diagnosis. Nevertheless, how to
exploit the strengths of attention to aggregate information from
entire inputs has not been investigated in the task of visual
grasp detection. Unlike prior works, we design a transformer
based encoder-decoder architecture to predict the grasp pos-
ture in an end-to-end manner. It is shown that our method
achieves higher grasp success than the state-of-the-art CNNs
counterparts.
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III. METHOD

Grasp Representation: The autonomous visual grasping tasks
generally start from collecting visual images of the object by
sensory input, which will then be processed to generate an
effective grasp configuration to maximise the probability of
grasp success. Considering a parallel-plate gripper, the grasp
representation g [20] is formulated as a 5-dimensional tuple:

g = {x, y, θ, w, h} (1)

where (x, y) are the center coordinates of the grasp rectangle,
(w, h) denote the width and height of the grasp rectangle,
and θ is the orientation of the grasp rectangle with respect to
the horizontal axis. Given a gripper with known dimensions,
a simplified representation can be expressed as g = (p, φ, w)
where p = (x, y), φ indicates the orientation angle of gripper
and w denotes the opening distance of gripper, respectively.

To facilitate grasping, we follow the setting in [17] to represent
the grasp in 2-D image space as

G = {Q,W,Θ} ∈ R3×W×H , (2)

where the grasp quality Q measures the grasp success of each
pixel, and W and Θ are the gripper width and orientation angle
maps. The value of each pixel in W and Θ represents the
corresponding width and angle of gripper at that position during
the grasping.

Consequently, in the developed TF-Grasp, the grasp detection
task boils down to three sub-tasks, namely the problems of
predicting grasping position, angle, and width.

Grasp Transformer Overview: A deep motivation of this work
is that the treatment of robot perception in complex, dynamic
robotic tasks should be global and holistic with information mu-
tual fusion. Specifically, the grasping model can be formulated
into an encoder-decoder architecture with a U-shaped structure,
as detailed in Fig. 1. The encoder branch aggregates the entire
visual input, mutually fuses features by using attention blocks,
and then extracts the specific features that are useful for visual
robotic grasping. During the decoder process, the model incor-
porates features delivered via skip-connections and performs
a pixel-level grasp prediction by up-sampling. More concretely,
the attention modules in the decoder enable more comprehensive
processing of local and long-range information, allowing for
better multi-scale feature fusion. Each pixel in the prediction
heatmap is correlated with the final location and orientation of
the end-effector.

To bridge the domain gaps between the transformer and
visual robotic grasping tasks, we have carefully designed our
grasping transformer in the following aspects for improved grasp
detection. (a) Cascade Design. Different from the classic ViT
architecture, we adapt a cascaded encoder-decoder structure.
The encoder utilizes self-attention to learn a contextual repre-
sentation that facilitates grasping and the decoder makes use of
the extracted features to perform a pixel-level grasp prediction.
(b) Local and Global balance. We utilize the swin attention layer
to achieve a trade-off between global and local information
for better scene perception. Window attention performs local
feature extraction and the shifted-window attention allows cross

Fig. 1. Overview of the TF-grasp model. Our model takes as input the image
captured by the camera mounted on the end-effector of the manipulator and
generates a pixel-level grasp representation.

window interactions to globally focus on more diverse regions.
(c) Feature Fusion. The feature representations at different stages
are connected by skip-connections for a multi-scale feature
fusion, which acquire both rich semantic and detailed features.
(d) Lightweight Design. It is essential for robots to account
for efficiency and the real-time performance. We utilize shifted
attention blocks and a slimming design for our grasping trans-
former to reach an ideal trade-off between the performance and
speed.

Grasp Transformer Encoder: Before being fed into the en-
coder, the image is first passed through patch partition layer and
is then cut into non-overlapping patches. Each patch is treated as
a word token in the text. For example, a 2D image I ∈ RW×H×C

is split into fixed-size patchesx ∈ RN×(P×P×C), where (H,W )
denote the height and width of the original image, C represents
the channel of the image,P is the shape size of each image patch,
and N = H ×W/P 2 refers to the number of image patches.
Then token-based representations can be obtained by passing
the images patches into a projection layer.

The encoder is composed by stacking identical transformer
blocks. Attentions in the transformer block build long-distance
interactions across distant pixels and attend on these positions
in the embedding space. At the top of the encoder is a bottleneck
block attached to the decoder. The fundamental element in our
grasping transformer framework is the multi-head self-attention.
The input feature X is linearly transformed to derive the query
Q, key K, and value V , which are defined as follows:

Q = XWQ,K = XWK , V = XWV , (3)
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Fig. 2. The architecture of our transformer block.

where WQ,WK ,WV are linear projection matrices. Next, we
compute the similarity between the query and key by using the
dot product to obtain the attention,

Attention(Q,K, V ) = SoftMax

(
QKT

√
d

+B

)
V (4)

where
√
d is the scaling factor and B is the learnable relative

position encoding.
The computational complexity of self-attention grows

quadratically with respect to the image size. To achieve com-
putational efficiency, we leverage the advantages of CNNs and
transformer and adopt the swin-transformer block [8] in our
framework. The swin-transformer layer consists of two parts: lo-
cal attention and global attention. Within the local attention, the
calculation of self-attention is restricted to local regions where
images patches are divided into non-overlapping local win-
dows. Cross-window attention introduces connections between
neighbors by sliding non-overlapping windows. The structure of
swin-transformer block is presented in Fig. 2 which is composed
of MLP, Layer Norm, window-based MSA and shifted-window
MSA. The computation procedure of swin-transformer block is
represented as follows:

x̂l = W-MSA
(
LN

(
xl−1

))
+ xl−1,

xl = MLP
(
LN

(
x̂l
))

+ x̂l,

x̂l+1 = SW-MSA
(
LN

(
xl
))

+ xl,

xl+1 = MLP
(
LN

(
x̂l+1

))
+ x̂l+1 (5)

where W-MSA and SW-MSA refer to the local window and
global shifted window multi-head self-attention, respectively.
xl−1 denotes the feature of output from the previous layer. Then,
the features will be sent into the window attention, W-MSA.
There is a layer norm before both MLP and attention layer,
and residual connections are applied to these modules. Between
every two swin transformer blocks, there exists a patch merging
operation that reduces the resolution of feature maps. The patch
merging layer builds a hierarchical representation by gradually
merging consecutive neighboring patches between successive
transformer layers.

Grasp Transformer Decoder: The decoder generates an ex-
ecutable grasping configuration that allows the end-effector to
move to the corresponding positions. We transform the planar
grasp detection problem into a pixel-level prediction. Three
grasping heads are attached in parallel to the top of the decoder,
including a grasp confidence head Q, a gripper angle head Θ,
and a gripper width head W . The output of each head is a
heat map with the same size as the input visual image. The
grasp confidence head outputs a value between 0 and 1, which
indicates the probability of the successful grasping at each pixel
point. Likewise, the gripper width and angle heads output the
width and rotation angle of the gripper when grasping at the
corresponding point in the image, respectively. We treat the
grasping posture estimation as a regression problem and use
our transformer model to learn a mapping F : I → G̃ by mini-
mizing the distances between the predicted grasping heatmaps
G̃(Q,W,Θ) and the ground truth, where I is the input data. The
loss function is defined as follows:

L =
N∑
i

∑
m∈{Q,W,Θ}

‖G̃m
i − Lm

i ‖2 (6)

where N is the number of sample size and Li is the correspond-
ing label.

The ultimate grasp location is the position with the highest
grasp confidence by retrieving the grasp quality heatmap, de-
fined as:

G∗
pos = argmaxpos Q, (7)

where Q is the grasp confidence map. Afterward, we extract
the predicted angle θ and angle w of the corresponding position
from the angle and width heatmaps.

In our grasp detection decoder, we also adopt swin transformer
block to reduce the computational complexity. Swin attention
aggregates multi-scale features and builds a hierarchical rep-
resentation. And skip-connections merge the features learned
at these different stages for further fusion to produce a better
grasp posture. Analogous to U-net [19], skip-connections are
implemented by concatenating features from the i-th layer of the
encoder directly into the layer i-th in the decoder. In the decoding
phase, following the patch expanding layer, the concatenated
features are taken as input to the next attention block stage.
Simultaneously, we can learn the relationship between the fused
features where the features in the encoder can be used as queries
and keys to interact with the counterparts in the decoder for
self-attention computing.

A benefit of our pixel-level grasp representation is that only a
single forward propagation is required to obtain the best grasp
postures within the global visual scene, avoiding the need to
generate multiple grasp candidates and saving the computation
expense.

IV. EXPERIMENTS

In this section, extensive experiments are carried out to val-
idate the performance of the proposed TF-Grasp method. We
verify the performance of TF-Grasp on two popular grasping
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Fig. 3. The visualized attention heatmaps learned by our method, which show that our transformer model can learn the concepts beneficial for grasping.

datasets and then evaluate its effectiveness on a real Franka
Panda robotic manipulator.

The goal of this section tends to answer the following ques-
tions:
� Is the transformer-based grasp detection model better than

CNN-based models?
� If true, what makes the transformer-based grasp detection

model outperforming others?

A. Datasets and Experiment Setup

The Cornell grasping data [14] is a multi-object dataset that
contains 885 images. The resolution of each image is 640× 480.
The whole dataset is relatively small and we use various data
augmentation techniques such as rotation, zooms, and random
cropping to avoid overfitting. We then validate the performance
of TF-Grasp on the Jacquard dataset [21] which is generated in a
simulator via CAD models. The Jacquard dataset is fairly large,
containing over 50 k images of 11 k object categories, and there
are over 1 million annotated grasp labels.

Evaluation Metric: A predicted grasp is regarded as correct
if the following conditions are satisfied.

i) The discrepancy between the predicted grasping angle and
the ground truth is within 30◦.

ii) The Jaccard index defined in (8) is greater than 0.25.

J (R∗,R) =
|R∗ ∩ R|
|R∗ ∪ R| (8)

TF-Grasp takes a 224× 224 image as input and outputs three
pixel-wise maps with the same resolution as the input. The input
is normalized by subtracting its mean and dividing the standard
deviation. We follow the common strategy to train the grasp
transformer. Both the encoder and decoder contain four swin-
attention blocks and each consists of 1, 2, 4, 8 attention heads.
The window size is 7. At each training step, a batch of samples
is randomly sampled from the training set and we use the ground
truth as the target values to train our neural network. Concretely,
we utilize the mean squared error as the loss function and apply
AdamW [28] as the optimizer. The default size of batch size is set
to 64. The patch partition layer is implemented by convolutions
with kernels of p× p and a stride p. In our implementation, p is
set to 4. In order to preserve a one-to-one mapping of the angle

TABLE I
THE ACCURACY ON CORNELL GRASPING DATASET

Θ between [−π
2 ,

π
2 ], we decode the learning of angle into two

components, sin(2Θ) and cos(2Θ). In this way, the final angle
is obtained by arctan( sin 2Θ

cos 2Θ )/2. TF-Grasp is implemented by
PyTorch, and the entire grasp detection system is running on
the Ubuntu 18.04 desktop with Intel Core i9 CPU and NVIDIA
3090 GPU.

B. Experimental Results and Analysis

To show its effectiveness, our approach is compared with a
number of baselines under the same experimental conditions,
i.e., evaluation metric. The results of image-wise (IW) and
object-wise (OW) settings in the public Cornell grasping dataset
are present in Table I. Since the Cornell dataset is relatively
small, we follow the setting of previous works [3], [5], [14]
by adopting a five-fold cross-validation. Also, to make the
comparison fair and comprehensive, the input modalities and
running time are considered. For all compared baselines, we use
the data reported in their original papers. Taking as input only the
depth information, our TF-Grasp achieves an accuracy of 95.2%
which is competitive to the state-of-the-arts. When using both
depth and RGB data, our model obtains 97.99% accuracy. For
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TABLE II
THE ACCURACY ON JACQUARD GRASPING DATASET

Table II, we use 90% data of the Jacquard dataset as the training
set and the remaining 10% as the validation set. In addition,
our model takes about 41 ms to process a single image using
the Intel Core i9-10900X CPU processor, which is competitive
with the state-of-art approaches and basically meets the real-
time requirements. The transformer grasping model exhibits a
better accuracy on both datasets compared to conventional CNN
models. Our proposed approach achieves a higher accuracy of
94.6% which is on-par or superior to previous methods. The
results on the Cornell and Jacquard datasets all indicate that the
model with the attention mechanism is more suitable for visual
grasping tasks.

Despite the fact that our model is trained on a single object
dataset, it can be well adapted to multi-object environments with
the help of attention mechanisms. In addition, to evaluate the
advantages of the transformer versus CNNs for visual grasping
tasks, we use the original convolution layers, residual layers, and
our transformer as feature extractors to test detection accuracy on
different objects on the Cornell dataset. We apply an object-wise
split to the Cornell dataset and Fig. 5 shows the detection accu-
racy of objects not seen during the training phase. All objects
are subsets of the Cornell dataset and are evaluated 5 times. All
models shown in Fig. 5 employ an encoder-decoder architecture
with 4 stages in order to guarantee a fair comparison, where
the original-conv is a fully convolutional neural network and
resnet-conv is to replace the original convolution layer with the
residual block. The result of different models is shown in Fig. 5.
Note that the transformer outperforms original convolutions on
all selected objects and is marginally better or on-par with the
residual network.

These results demonstrate that the transformer improves
robotic grasp detection. We conjecture that prior methods that
rely on local operations of the convolution layers might ignore
the dependencies between long-range pixels. Instead, our ap-
proach leverages the attention mechanism to exploit both local
and global information and integrates features that are useful for
grasping. To better demonstrate whether the transformer-based
grasping model can model the relationships between objects and
across the scene, we present the multi-object grasping results
and grasping quality heatmaps of the transformer and CNN in
Fig. 4. Our aim is to verify that the transformer is preferred over
CNN for visual grasping tasks and is better at capturing global

and local information. From Fig. 4, we can see that the grasp
rectangles predicted by CNN have the right grasp position in
most cases, but the predicted gripper angle and width are often
not appropriate. In some cases, CNN even generates grasping
rectangles in the background. With the attention mechanism, our
transformer-based model is able to clearly identify the objects
from the background. In the second row of Fig. 4, the grasping
quality images show that the CNN-based approach can not iden-
tify the graspable area and consider the entire region of objects
as a graspable zone with high success probabilities. Instead, as
shown in the fourth row of Fig. 4, the transformer-based model is
prone to capture the area that is easy to grasp due to its larger re-
ceptive field. For each attention block, the attention operation es-
tablishes the inter-element relationships through self-attention,
and the subsequent multi-layer-perceptron (MLP) module fur-
ther models the inherent relation between each element. The
layer normalization and residual connections that interleave
these two operations keep the training stable and efficient. In
contrast, in CNN, the receptive field of each convolutional kernel
is limited. To build a larger receptive field, the model often
needs to repeatedly stack convolutional layers to gain global and
semantically rich features. However, such a method in general
results in the loss of detailed feature information such as the
position and shape information of objects that are essential
for grasping tasks. Therefore, we exploit a transformer-based
model which can better capture not only the global informa-
tion but also detailed features (e.g., the position and shape
information).

C. Visualization Analysis

To clarify why the transformer architecture is helpful for grasp
detection tasks, we visualize the heatmaps of attention maps,
detailed in Fig. 3. From these heat maps, we can discover that the
self-attention modules can readily learn the area that is easy for
grasping, such as the edges of objects, ignore irrelevant details,
and pay more attention on the contour and shape of the objects.
Meanwhile, the model focuses on more general characteristics
rather than individual features. For example, for the chairs
shown in Fig. 3, our method evaluates the edge of the chairs
with a higher grasp quality. We further provide more concrete
examples of real-world grasping, and the experimental results
show that the attention mechanism is more likely to achieve a
better understanding of the grasping scenario, generate more
accurate grasping rectangles, and work well on both household
and novel objects. In Fig. 6, we illustrate a pick-and-place task
based on our TF-Grasp on the Franka manipulator. Our grasp
detection system works well for novel objects that have not been
seen during training procedure and also locates graspable objects
in cluttered environments.

In conclusion, the visualization results indicate that our TF-
Grasp can produce a more general and robust prediction, which
contributes to improving the detection accuracy.

D. Ablation Studies

To understand the role of skip-connections in our transformer
model on the visual grasping problems, we conduct experiments
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Fig. 4. Visualization comparison of the CNN and transformer-based grasping models.

Fig. 5. The accuracy of different models as feature extractors on selected
objects.

TABLE III
COMPARISON BETWEEN USING AND NOT USING SKIP-CONNECTIONS

on the Cornell and Jacquard grasping datasets with and without
skip-connections using our transformer, respectively. The de-
tailed experimental results are shown in Table III. The use of
skip-connections is better than not using skip-connections in all

input modes. The attention mechanism in the transformer builds
inter-relationships in each layer, incorporates global features,
and achieves promising results. Through skip-connections, the
multi-scale representations at different stages are further fused
globally. The empirical evidence shows that these further refine-
ment and contextual features contribute to the quality of final
grasp prediction.

E. Grasping in Real World Scenarios

Physical Setting: The Franka Panda robot manipulation and
the RealSense D435 RGB-D camera are used in our physical
experiment. The camera is attached to the end-effector to keep a
good visual coverage of graspable objects. In each grasp attempt,
our TF-Grasp receives the visual signals from the depth cam-
era mounted on the robot end-effector and outputs an optimal
grasping posture. Next, the end-effector approaches the optimal
target grasping posture based on the trajectory planned by a
motion planning method, and then closes the gripper. Such a
transformer-based grasp detection system can be easily adapted
to other hardware platforms. During the grasp process, the raw
depth sensor is filled with a portion of missing pixels that have
NaN values. We generate the mask of NaN values, normalize
the depth image, and apply cv2.inpaint [30] for further depth
completion.

We perform a total of 165 grasping attempts, of which the
robot performs successful grasp 152 times, achieving a suc-
cess rate of 92.1%. Table IV lists the results of learning-based
methods on real robot grasping. These results indicate that the
transformer-based grasp detection system also behaves well on
real robots.
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Fig. 6. Screenshots of physical grasping in clutter.

TABLE IV
THE RESULTS FOR PHYSICAL SETUP

V. DISCUSSION AND CONCLUSION

In this work, we develop a novel architecture for visual grasp-
ing. Although CNN and its variants are still the dominant models
in visual robotic grasping, we show the powerful potential of
transformers in grasp detection. Compared with CNN-based
counterparts, the transformer-based grasp detection models are
better at capturing global dependencies and learning powerful
feature representation. The results show that our proposed ap-
proach outperforms original CNN-based models. The contexts
can be better represented by attention propagation. Nevertheless,
the current approach is limited to the parallel gripper. Future
research will focus on developing a universal transformer-based
grasp detection method for other types of grippers, such as the
five finger dexterous hand.
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