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Abstract— Hand pose estimation is a meaningful yet
challenging task, primarily due to the intricate nature of
hands and common issues such as self-occlusion. Traditional
approaches often struggle with effectively mapping image
features to a manageable base distribution, frequently
neglecting the vital relationship between local and global
features in pose estimation. To address these challenges, we
propose 2DHandFlow, a flow-based framework that processes
RGB images to output the 2D pose of hands. Our approach
leverages visual transformers to embed image patches and
uses a transformer encoder to extract global features. The
2DHandFlow learns to convert visual features from RGB
images into a tractable distribution, enhancing the likelihood
of accurately recognizing keypoints. Our model adopts a 2D
normalizing flow model, which employs fully convolutional
networks and a 2D loss function to represent the relationships
among hand keypoints. By integrating visual transformers for
feature extraction, our method has achieved high accuracy
in 2D hand pose estimation. Impressively, our approach
achieves 0.97 and 0.92 PCK on the Stereo Hand Pose Tracking
Benchmark (STB) and the Rendered Hand Dataset (RHD),
respectively. These results indicate superior performance. The
project website is: https://github.com/HYing268/2dhandflow.

I. INTRODUCTION

Hand pose estimation, alongside hand recognition
techniques [1], plays a pivotal role in many fields such as
sign language recognition [2], human-computer interaction
[3], and virtual reality [4]. While algorithms such as
Convolutional Pose Machine (CPM) [5] and Single-
stage multiperson Pose Machine (SPM) have established
body pose estimation, they can’t be directly applied to
hand pose estimation due to hands’ complex structure,
higher dexterity, and self-occlusion. Hand pose estimation
requires explicit modeling of the structural relationships
between hand keypoints.

Due to low implementation cost and easy access to data
acquisition, 2D hand pose estimation is a recent research
focus. Leveraging depth sensors, hand pose estimation
has shifted from relying on hardware-based solutions
like data gloves to computer vision based technology
[6]. Nevertheless, depth sensors [7] generally suffer from
limited resolution and sensitivity to lighting [8]. Existing
methods face issues such as low recognition accuracy,
the need for costly hand segmentation masks and the
challenge of recognizing gestures across different scales.
Recently, the advances of Deep Convolutional Neural
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Fig. 1. 2DHandFlow transforms the features of an input image to a
standard normal distribution, where the mean indicates the features of
the keypoints.

Networks (DCNNs) [9] have spurred research into hand
pose estimation using RGB images. While DCNNs can
learn highly effective feature representations, they do not
explicitly capture spatial relationships between joints or
keypoints, leading to joint inconsistency [10].

Generative model is a promising approach for hand pose
estimation [11]. By modeling the statistical correlation
between the 2D hand pose space and the associated
input data space, hand poses can be estimated in a
semi/self-supervised manner. For instance, Depth-image
Guided GAN (DGGAN) [12] produces lifelike depth maps
from the input RGB image for the regularization of 3D
hand pose estimation model. Cycle-consistent Generative
Adversarial Network (Cycle-GAN) [13] generates a depth
map with color-coded predictions for the fingertips, wrist,
and palm conditioned on the actual depth image. However,
GANs based approaches lead to increased training
complexity due to the adversarial training. Recent works
[14], [15] use a trainable method that optimizes the log-
likelihood of image features incorporated into a standard
normal distribution to facilitate keypoint localization and
pose estimation. Nevertheless, the initial 1D normalizing
flow model requires the flattening of 2D input features into
a 1D vector for distribution estimation, which results in the
loss of the intrinsic spatial positioning of the 2D image.
This limitation restricts the model’s ability to fully exploit
the rich spatial structure and correlations that are crucial
for accurate estimation of hand pose from 2D images.

To address this problem, we extend normalizing
flow to 2D space and propose the 2DHandFlow, which
preserves the spatial positional information of the 2D
image for more accurate hand pose representation. This
design improves hand keypoint recognition accuracy
by better understanding hand pose variations and
nuances. Additionally, by capturing the complex spatial
dependencies between keypoints, 2DHandFlow can
effectively model the correlations and interactions among
different parts of the hand, which enhances the accuracy
and robustness of hand keypoint estimation. In hand
pose estimation, existing studies concentrated on CNN
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networks like ResNet for feature extraction. In contrast,
we employ Visual Transformer (ViT) [16], [17], which
offers a global receptive field enhancing the processing of
both global and local image information. Its self-attention
mechanisms can help understand the relationships between
all feature pairs within an image, which allows ViT to
preserve semantic information at various depths, an
aspect where CNNs tend to fall short due to fixed-weight
convolutional filters. As shown in Fig. 1, our approach
uses a feature extractor to derive visual features, which
are then fed into the 2DHandFlow model for probability
density estimation. This approach, bolstered by the
transformer’s enhanced analysis of keypoint relationships
and hand-environment interactions, leads to more accurate
hand joint estimations. Extensive experiments show that
the 2DHandFlow achieves top-tier performance, with PCK
scores of 0.92 on the RHD and 0.97 on the STB.

The main contributions of this paper are outlined
as follows. First, we introduce 2DHandFlow, a two-
dimensional, flow-based framework specifically designed
for 2D hand pose estimation. Second, the 2DHandFlow
is versatile, functioning as a plug-and-play solution
compatible with a variety of feature extractors. A
significant advancement is the integration of the vision
transformer module, which supersedes traditional CNNs.
In addition, in practical applications, 2DHandFlow has
demonstrated state-of-the-art performance in 2D hand pose
estimation. It achieves remarkable results on two widely
recognized datasets.

II. METHOD

A. Problem Formulation

To explain the idea behind 2DHandFlow, we first
examine the regression problem through the lens of
maximum likelihood estimation (MLE). Given an input
image I, the regression model forecasts a distribution
Pθ(µ|I) that represents the likelihood of the true value
occurring at the location µ, with θ representing the model
parameters to be learned. Given the intrinsic uncertainties
and potential errors in the labeling process, the labeled
location µg can be regarded as an approximation sampled
close to the true value the human annotator determined.
The learning process’ goal is to adjust the model
parameters θ to make the observed label µg as probable as
possible. The loss function for MLE process is defined as

Lmle = − logPθ(µ|I) |µ=µg
. (1)

As shown in [18], only when we have prior knowledge
of the target variable distribution can we better construct a
loss function to facilitate the learning of model parameters.
As a result, improving the accuracy of the density
function is crucial. However, due to the unknown analytical
expression of the underlying distribution, regressing
multiple values and creating the density function directly
is infeasible.

To address this challenge and enhance human pose
estimation, we introduce a new method that utilizes the
power of normalizing flow to estimate the underlying
distribution. Normalizing flow is a reversible generative

model that map an initial distribution to a known
probability distribution through learned transformations.
By ensuring reversible transformations, the model can
estimate the probability density function of a given input,
which we use to model the distribution of hand joint
location and learn the likelihood estimation of 2D hand
poses. Since the main notion of flow is the distribution
transformation formula, we define a reversible function
f : X → Z to map image features x to the hidden variable
z, i.e.,

pX(x) = pZ(f(x)) |det (Jf(x))| ,
pZ(z) = pX(f−1(z))

∣∣det (Jf−1(z)
)∣∣ . (2)

where det (·) indicates the determinant andJf(x)
is Jacobian of f(x). In a flow model, each flow
layer is represented by a reversible function. Given a
sample from the initial distribution, we can gradually
transform the initial distribution into the target probability
distribution by sequentially applying these reversible
functions. This invertibility allows for implicit learning of
the inverse mapping. By repeatedly drawing samples from
a straightforward, tractable distribution, approximating the
complete posterior distribution is possible. Based on prior
research, we employ and expand upon their frameworks to
model the complete posterior distribution of plausible 2D
hand pose given a RGB image.

Problem The aim of this work is to develop a hand
pose estimation mechanism, namely 2DHandFlow, which
leverages normalizing flows to train a model to accurately
map the input RGB image data I to 2D heatmaps of
hand keypoints’ position probability distribution H2D ∈
RM×H×W and silhouette representing the outline of the
hand S ∈ RH×W of different hand pose, where M = 21
means the number of hand joints and (H;W) = (64;64)
indicates the 2D heatmaps’ resolution and silhouette.

B. Feature Extractor

Feature extraction involves transforming raw data into
higher-level representations. In our method, we utilize
ResNet or ViT to extract representative features from
the input image. The ViT [16] involves dividing the
input image into a series of fixed-size image patches.
Each patch is flattened through the patch embedding
layer, and positional information is added through position
embedding. The patch is treated as a sequence of input
vectors and multiple layers of transformer encoders are
used to process the input. Each encoder layer includes of
a multi-head self-attention mechanism and a feed-forward
neural network, aiming to capture the relationship between
image patches and obtain global contextual information.
The global image feature representation is obtained by
performing pooling on the output of the last layer. The
ResNet model [19] is a deep convolutional neural network
composed of multiple residual blocks, which is used to
learn residual feature representations. The input image
in ResNet is initially handled by initial convolutional
layer to generate low-level visual patterns. Subsequently,
the residual blocks consist of successive convolutional
operations which help in capturing increasingly complex
and abstract features. When using ViT, we specifically
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Fig. 2. (a) The whole pipeline for 2D hand pose estimation composing of feature extractor and 2DHandFlow. Either CNN or ViT can be used as the
feature extractor. The 2DHandFlow is alternatively stacked by the “3× 3” and “1× 1” flow. (b) An example flow step of our 2DHandFlow, where
the “Conv 2d” can respectively be a 3× 3 or 1× 1 convolution layer for 3× 3 or 1× 1 flow.

use the features from a certain layer as it allows us to
better capture the connection between global feature and
local patches. When using ResNet as the feature extractor,
we utilize the features from the last layer of the first
three blocks directly and feed them to united 2DHandFlow
models.

C. 2DHandFlow Model Architecture

Normalizing flow is used to map data to a latent space
where the distribution is tractable by applying a sequence
of invertible transformations to the input data. Let Z ∈
Rd be a random variable with a base distribution, such
as standard multivariate Gaussian distribution pZ(z), and
X ∈ Rd denote a random variable with any arbitrary
complex distribution pX(x), with a bijective invertible
mappingïŒ the normalizing flows project X into Z. As
to the bijection function, the rule of change-of-variable
determines the model distribution on X by

pX(x) = pZ(z)

∣∣∣∣det(∂z

∂x

)∣∣∣∣ = pZ(fθ(x))

∣∣∣∣det(∂fθ(x)

∂x

)∣∣∣∣ .
(3)

where z is sampled from a standard normal distribution,
∂fθ(x)

∂x is the Jacobian of a bijective invertible flow model
with z = fθ(x) and x = f−1

θ (z), and θ is the 2D flow
model’s parameter. We can estimate the log likelihoods of
image features from pZ(z) by

log pX(x) = log pZ(fθ(x)) + log

∣∣∣∣det(∂fθ(x)

∂x

)∣∣∣∣ .
(4)

In implementation, to obtain a complex distribution with
expressive mapping, our flow model f2d is constructed by
chaining a sequence of multiple invertible transformation
blocks fi. Flow models build complex distribution
mappings by concatenating blocks fi, where each block
is composed of an activation normalization layer and an
affine coupling layer. Each block maps the input data
from one representation space to another, and through

the successive concatenation of these blocks, the data is
transformed into the target probability distribution. The
relationship between input X and latent representation Z
becomes:

X
f1−→ H1

f2−→ H2
f3−→ · · · fK−−→ Z,

X
f−1
1←−− H1

f−1
2←−− H2

f−1
3←−− · · ·

f−1
K←−− Z,

(5)

where the 2D flow model is f2d = f1 ◦ f2 ◦ f3 ◦ · · · ◦ fK
with K transformation blocks. The log-likelihoods of X
can be further written as

log pX (x) = log pZ (fθ(x)) +

K∑
i=1

log

∣∣∣∣det( ∂fi
∂fi−1

)∣∣∣∣ .
(6)

And each transformation block fi consists of multiple
steps. As shown in Fig. 2, Actnorm serves as an activation
normalization layer which utilizes a scale and bias with
initialization dependent on the data. Normalizing the
activation values for each mini-batch sample helps alleviate
the problem of gradient vanishing. The affine coupling
layer splits the input into two segments. One segment can
undergo an affine transformation influenced by the other
segment, which is kept unchanged for an easy reverse
transformation. In this way, the affine coupling layer can
achieve a non-linear transformation of the input data while
maintaining the dimensionality of the input data. This
is particularly useful for modeling complex probability
distributions. Following [20], we apply affine coupling
layers in each block, which each step can be defined as

ya, yb = split(y),

y
′

a = ya,

y
′

b = s(ya)⊙ yb + b(ya),

y
′
= concat(y

′

a, y
′

b),

(7)

where s(ya) and b(ya) are outputs of the two neural
networks. The split(y) function performs splitting and
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concat(y
′

a, y
′

b) function performs concatenation along
the channel dimension. And ⊙ represents the element-
wise multiplication. To avoid multiplication by zero and
ensure the block’s invertibility, the exponential function is
employed.

The original normalizing flow model uses fully
connected networks for the two subnets, s(ya) and b(ya).
However, by flattening and squeezing the input visual
features from 2D to 1D, the spatial positional relationships
within the feature map are destroyed. To address this
limitation and enable a 2D approach in the normalizing
flow model, we employ two-dimensional convolution
layers in the default subnet. This allows us to preserve the
spatial information within the flow model. This approach
utilizes a fully convolutional network that alternates
between 3 × 3 convolutions and 1 × 1 convolutions. This
preserves the spatial information in the flow model by
capturing the local patterns and adjusting the loss function
accordingly. By adopting this fully convolutional network,
the flow model is ensured to retain the spatial relationship
in the input visual features.

To mitigate instabilities arising from the exponential
function in the coupling block, the parameterized soft
clamping mechanism [21] is employed. This scale
coefficients s is applied as the last layer to the outputs
s1 and s2 by the activation function

σα(s) =
2α

π
arctan

s

α
. (8)

where s refers to network input. This limits the values
to the interval (−α, α), thereby preventing the scaling
components from reaching excessively large magnitudes.

Loss Terms The loss function of 2DHandFlow is
defined as L2D = λHLH + λSLS + λFLF with tuning
parameter λH , λS , λF ∈ R+, where

LH =
1

M

M∑
m=1

H∑
i=1

W∑
j=1

(
Hm

2D (i, j)− Ĥm
2D (i, j)

)2

, (9)

LS =

H∑
i=1

W∑
j=1

(Sgt (i, j) log(Spred (i, j))

+ (1− Sgt (i, j)) log (1− Spred (i, j)) ,

(10)

LF =
1

K

K∑
k=1

(
1

2

∑
∥pZ (zk)∥2 − log

∣∣∣∣det( ∂zk
∂xk

)∣∣∣∣) .

(11)
First, the heatmaps loss, denoted as LH , is defined as the

mean squared error (MSE) calculated on a per-pixel basis
between the prediected and actual 2D heatmaps. The actual
2D heatmap H(m)

2D of keypoint m is created by placing
2D Gaussian distributions at the keypoint annotations of
m with a standard deviation of σ = 1.5. Secondly, the
silhouette loss LS is computed as the cross-entropy loss
between the estimated silhouette Spred and the actual
silhouette Sgt. The heatmaps loss focuses on improving
the accuracy of keypoint localization, while the silhouette
loss aims to enhance object contour recognition. Thirdly,
the flow loss LF aims to lower the model’s complexity and
improve its generalization by penalizing the sum of squares

Fig. 3. Quantitative results of 2DHandFlow in accordance PCK. The
comparisons results with sota methods for 2D hand pose estimation on
dataset RHD and STB.

of the model output and the logarithm of the Jacobian
matrix’s determinant.

III. EXPERIMENT

In this section, 2D hand pose estimation is evaluated
quantitatively and qualitatively against state-of-the-art
results. Ablation studies are performed to highlight the
effectiveness of each model component.

Implementation Details We implement our model
using PyTorch and train it on NVIDIA GeForce RTX
3090 graphic cards. Table I presents the details of feature
extractor’s structure. In our approach, we only utilize
the feature maps from a specific layer of the vision
transformer. Finally, we take the average value as the final
result. In 2DHandFlow, we employ 9-step flows for all
feature extractors. The hyper-parameters are set to balance
different types of supervision. Our model is trained using
the Adam optimizer with a learning rate of 1e-3 and weight
decay of 1e-5. The training follows a 100-epoch schedule,
and the batch size is set to 32.

Datasets We train and score this method on two public
datasets: the Rendered Hand Dataset (RHD) [22] and the
Stereo Hand Pose Tracking Benchmark (STB) [23]. For
training purposes, we selected 10 sequences from the STB
dataset, while the remaining 2 sequences were reserved for
testing, following the approach described in [22]. Similar
to [24], we shifted the root joints in STB from the palm
to the wrist, ensuring consistency with the RHD. In both
datasets, the left hand samples were mirrored to the right
hand.

Metrics We employed the percentage of correct
2D keypoints (PCK), which was measured at distance
thresholds spanning from 20 mm to 50 mm, to assess
the algorithm performance.

Results For quantitative analysis, we parabole our
approach in accordance PCK with other methods [25]–[29]

TABLE I
SPECIFIC DETAILS OF DIFFERENT FEATURE EXTRACTORS

Backbone Input Size Block Index Feature Size

CaiT-M48-distilled 448 40 28

DeiT-base-distilled 384 7 24

ResNet18 256 [1,2,3] [64,32,16]

Wide-ResNet50-2 256 [1,2,3] [64,32,16]
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TABLE II
COMPARISONS WITH STATE-OF-THE-ART METHODS IN ACCORDANCE PCK

Method Ours(ResNet) Ours(ViT) AGMN NSRM(LDM) NSRM (LPM) FreiHand KCR SRHandNet
[25] [26] [26] [27] [28] [29]

PCK RHD 0.89 0.92 0.69 0.78 0.82 0.77 0.83 0.46
STB 0.95 0.97 0.82 0.90 0.91 0.78 0.75 0.53

on both RHD and STB. Fig. 3 shows the comparison of
performance on the above mentioned datasets and Table
II summarizes numerical results. On STB dataset, our
2DHandFlow reaches 0.95 PCK using Resnet as feature
extractor and 0.97 PCK using ViT, achieving an absolute
PCK improvement of 15.66% comparing with AGMN
training with unary branch and approximately 4.44% in
contrast with NSRM with different basic representation
(LDM or LPM). On RHD dataset, 2DHandFlow achieves
0.89 PCK using Resnet and 0.92 PCK using ViT,
outperforming all the parabole methods. The results in
two different datasets indicate that our model can adapt
to various hand pose estimation settings. Utilizing ViT for
feature extraction, as opposed to ResNet, can yield superior
results due to its stronger global and local modeling
capabilities. Since the RHD contains more variation, all
results are lower than STB datasets. As shown in Fig. 3,
we preserve the pre-trained parameters of feature extractors
network to improve convergence speed.

Fig. 4 and Fig. 5 show the qualitative results through
the generated keypoints. The results with RHD dataset
especially demonstrate the effectiveness of our hand pose
estimation model under various challenging conditions,
including cluttered backgrounds, different environments,
similar color variations and so on. Our method consistently
achieves good results in these scenarios.

A. Ablation Study

Ablation study is conducted to show the effect of
main components within our method. These experiments
are completed on STB dataset because STB provides

Fig. 4. Visualization of forecasted hand pose for samples from STB
dataset.

Fig. 5. Visualization of forecasted hand pose for samples from RHD
dataset.

Fig. 6. The impact of flow steps on flow model performance.

consistent image quality and annotations facilitating data
analysis and algorithm complexity. The result aligns with
our expectation that using 2D flow model can significantly
enhance estimating 2D hand pose, and using ViT as feature
extractor can further build up the experimental capability.

Flow Step To investigate the effect of network
configurations on Flow model performance, we conduct
experiments by varying the number of flow steps K.
We started with a baseline 2DHandFlow architecture that
includes 9 flow steps and then systematically manipulated
the network structure by adding or removing steps. As
shown in Fig. 6, increasing the number of flow steps can
improve the final accuracy, but at step 9, we achieved a
balance between efficiency and performance.

Dimension of probability estimation Compared to
using 2D convolutional layers, we flatten and squeeze
the input visual features from ResNet in Fig. 7(a). The
experiment reveals that enabling a 2D approach in the
normalizing flow model can obtain improved performance
because the spatial information is preserved without
dimension loss.

Alternating network structure Based on the
experiment in Fig. 7(b), it is clear that convolution
kernel selection in subnet is a factor that influences the
experimental results. In order to strike a balance between
accuracy and inference speed, we utilize alternating
3 × 3 and 1 × 1 convolution kernels for large model
capacities backbone networks such as DeiT, CaiT, and
Wide-ResNet50-2. However, we rely solely on the 3 × 3
convolution layer for the backbone network with smaller
model capacities like ResNet18.

IV. CONCLUSION

In this paper, a lightweight 2D flow model is developed,
which projects the feature distribution of regular images
onto a standard normal distribution. In testing, the
probabilities obtained from this projection serve as
the confidence score for each hand joint. Extensive
experiments performed on the RHD and STB show the
superiority of 2DHandFlow over state-of-the-art methods
regarding accuracy and reasoning efficiency.
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Fig. 7. (a) The performance of 2DHandFlow using 2D convolutional
layers (b) The performance using alternating convolution kernel design
with large model capacities
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