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Abstract— Transparent objects are widely used in industrial
automation and daily life. However, robust visual recognition
and perception of transparent objects have always been a major
challenge. Currently, most commercial-grade depth cameras
are still not good at sensing the surfaces of transparent
objects due to the refraction and reflection of light. In this
work, we present a transformer-based transparent object depth
estimation approach from a single RGB-D input. We observe
that the global characteristics of the transformer make it easier
to extract contextual information to perform depth estimation
of transparent areas. In addition, to better enhance the fine-
grained features, a feature fusion module (FFM) is designed to
assist coherent prediction. Our empirical evidence demonstrates
that our model delivers significant improvements in recent
popular datasets, e.g., 25% gain on RMSE and 21% gain on
REL compared to previous state-of-the-art convolutional-based
counterparts in ClearGrasp dataset. Extensive results show
that our transformer-based model enables better aggregation of
the object’s RGB and inaccurate depth information to obtain
a better depth representation. Our code and the pre-trained
model are available at https://github.com/yuchendoudou/TODE.

I. INTRODUCTION

A large volume of transparent objects such as glasses,
plastic bottles are frequently appearing in the household,
manufacturing, and daily life. The study of computer vision
on transparent objects has also attracted a great deal of
attention, including transparent area segmentation [1], [2],
3D reconstruction [3], especially for service robots [4] or
industrial transparent object manipulation [5]. Unfortunately,
transparent objects often lack their texture due to the re-
flection and refraction of light, which make them hard
to be distinguished from the background. The interactions
between visible light and transparent objects are complex and
sophisticated, and often hard to model. Generally, for many
household transparent objects, the bulk of visible light passes
directly through, and only a fraction (4% to 8%) [1], depend-
ing on the refractive indices, is reflected. This often results
in the background behind the transparent object dominating
the depth information of the objects. Estimating the depth
of transparent objects is critical for scene understanding, in
which the depth estimation of transparent areas allows us to
achieve a richer representation of the objects themselves and
surroundings. However, the existing commercial-grade depth
cameras, e.g., Intel RealSense [6], and Microsoft Kinect
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Fig. 1. (a) shows the main challenges when estimating the depth
of transparent objects. The transparency of the object’s surface material
causes a large bias in depth prediction by the depth camera. (b) shows
some potential applications involving transparent objects such as object
manipulation and instrument processing.

[7], still can not provide satisfactory depth perception of
transparent objects. The reflection and refraction of light
around transparent objects lead to several challenges in the
transparent object image processing tasks. In scenes with
dense clutter of transparent objects, the edges of objects are
difficult to identify. In particular, in some extreme cases, a
few edges are even not visible at all.

Consequently, there have been many attempts to address
the depth estimation of transparent objects by deep neural
networks. Eigen et al. [8] are one of the first to use a
multi-scale convolutional neural network (CNN) to directly
predict the depth image from the color input. A ResNet-based
fully convolutional network architecture [9] is introduced
to regress the depth information. ClearGrasp [5] provides
a large-scale dataset of paired RGB-D transparent objects.
At present, a pretty intuitive approach is to train a fully-
convolutional neural network to directly regress the depth
information.

Besides, the CNN-based transparent object depth estima-
tion has a few limitations that the convolutional operation
is local and the restricted receptive field leads to poorly
extracted contextual information. Each convolutional kernel
concentrates more on a sub-region of the entire image. To
enlarge the receptive field, CNN-based models always keep
stacking convolutional layers, resulting in the loss of global
contextual information. Generally, transparent objects have
no color and their appearance is often heavily influenced
by background. Therefore, the model should have a stronger
capability to extract contextual information and retrieve cues
from the corresponding RGB and depth images. In fact,
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directly predicting the absolute depth from monocular images
is challenging even for humans. Therefore the model must
be strong enough in terms of contextual feature extraction.

In this paper, we gradually gather the token-based rep-
resentation from different transformer layers in the encoder
and progressively assemble them into a full-resolution depth
prediction. The decoder receives multi-scale representation at
different stages with global receptive fields. The fused feature
representation is eventually restored to a resolution of the
same size as the inputs for pixel-wise prediction. We conduct
extensive experiments on multiple datasets. The performance
of our model is improved by a large margin compared to pre-
vious best performing convolutional counterparts. Qualitative
results indicate that our model can produce more fine-grained
and globally coherent predictions.

The contribution of this paper can be summarized as
follows:

• To the best of our knowledge, this is one of the first
attempts to introduce a vision transformer to perform
depth estimation of transparent objects.

• TODE-Trans contains a contextual fusion module to
better perceive global information for further depth
prediction and shows promising generalization to novel
objects and unseen scenes.

• Experimental results demonstrate the effectiveness of
our model on a range of testing datasets. The studies
show that our model achieves competitive results com-
pared with existing solutions and also exhibits promis-
ing generalization across different datasets.

II. RELATED WORK

Transparent depth prediction and estimation. As the
depth sensing has received increasing attention over the
last decade due to its growing significance in autonomous
driving, 3D vision, and visual grasping. Earlier method [10]
used hand-crafted approaches to complete the missing values
on the surface of objects in the depth image. Several studies
usually assume that some information is already known, such
as background texture [11] or the 3D model of transparent
objects [12]. Previous work studies geometry-related proper-
ties and some patterns unique to transparent objects. Many
researchers [13], [14] are interested in studying the geometry
of transparent objects for reconstruction and composition.

Recent methods [8] model the depth sensing as a machine
learning prediction problem and use deep neural networks to
perform depth estimation. The benefit of using deep neural
networks for depth completion is that the model can learn
from data for depth predictions rather than copying and
interpolating from the input. Recently, the majority of current
works is still concerned with inaccurate depth estimation due
to LIDAR noise in outdoor conditions such as Cityscapes
[15] and KITTI [16] datasets. Even in indoor environments,
depth images captured by the RGB-D camera usually lose
more than half of the pixels on objects that are too far or too
close to the camera [17]. In addition, inferring the depth
of transparent objects in the scene not only suffers from
structural noise of the camera itself, but also from further

interference arising from refraction of light by transparent
materials. This problem is further exacerbated by refraction
on objects with too bright and glossy surface.

Currently, depth completion can be broadly categorized
into two classes according to the input type. The first class
directly regresses the depth map from the color image.
A number of approaches [18], [9], [19], [8], [20] adopt
convolutional neural networks to make deep predictions from
RGB images. Compared to the color-only input methods,
these approaches improve the performance but still suffer
from the generated low-quality results due to the limited
depth information. However, if the model’s predictions, e.g.
occlusion boundaries are inaccurate, it may lead to poor
results, and predicting multiple components would make the
optimization process very slow.

Transformer for dense prediction. Transformer [21] is
originally developed for sequence to sequence tasks, such as
machine translation, and question answering. Later, owing
to its excellent power to model the connections between
tokens in a sequence, the attention-based models, especially
transformer, have become the governing paradigm in nat-
ural language processing (NLP). ViT [22] has achieved a
further breakthrough by applying the standard transformer
from NLP to computer vision. A visual-oriented transformer,
Swin Transformer [23], is proposed that integrates both the
lone-range pixel modeling of attention mechanism and the
inductive bias of convolutional kernels for local information.
SETR [24] models semantic segmentation with transformer
encoder into a sequence-to sequence prediction task. Wang et
al. [25] present the use of transformer for visual grasping on
a physical robotic arm, and their results show that the global
features extracted by the transformer is more favorable for
dense pixel predictions. However, these mentioned works are
dedicated to outdoor scenes or other dense prediction tasks,
few of them concentrate on depth prediction for transparent
objects.

III. PROBLEM FORMULATION

Given a pair of the RGB scene image I ∈ R3×H×W and
inaccurate depth image D ∈ RH×W , the goal is to obtain
accurate depth predictions from monocular camera streams.
Our method entails generating a clear and complete depth
image D̂ ∈ RH×W for transparent objects, where H and
W are the height and width of the input image. The entire
model is designed to learn a function f that maps the RGB
scene image I and inaccurate depth image D to a refined
depth prediction D̂, defined in D̂ = f(I,D).

IV. METHOD

Architecture. As shown in Fig. 2, TODE-Trans contains
an encoder, a fusion feature module, and a decoder. We
adopt the transformer in the encoder stage to globally ex-
tract features. A fusion perception module is included to
iteratively merge the captured features. We leverage swin
transformer block [23] as the backbone to achieve a nice
trade-off between local fine-grained features and global con-
textual features in the encoder phase. Our encoder consists
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Fig. 2. Overview of our proposed method. The model takes an RGB I ∈ RH×W×3 and an inaccurate depth map D ∈ RH×W as input, and predicts
the depth output in an end-to-end manner. The entire network is composed of three stages: the first is a global feature extraction encoder consisting of
stacking transformer layers, the middle is a progressive depth refinement module, and the bottom is a decoder made of convolutional blocks that gradually
receive previous multi-scale features to recover the depth information of transparent objects.

of four stages. The first stage is composed of a patch
projection layer. Concretely, for an input RGB-D image,
we first split it into non-overlapping square patches with
patch size of 2, Then, the patches are treated as tokens. And
then they are flattened into vectors and fed into transformer
blocks. This kind of encoder allows us to develop multi-
scale features and can be used by the following module. The
attention mechanism globally learns the depth relationships
from different parts of the input image. We desire to conduct
the depth completion using more global information rather
than just local features from the color or raw depth image.
An overview of the swin transformer block is presented in
the bottom of Fig. 2. In the transformer block, at each layer,
a Layer Norm (LN) layer is first applied to the input feature
x before it enters the attention layer. The calculation flow is
shown as follows:

x̂l = W-MSA
(
LN

(
xl−1

))
+ xl−1,

xl = MLP
(
LN

(
x̂l
))

+ x̂l,

x̂l+1 = SW-MSA
(
LN

(
xl
))

+ xl,

xl+1 = MLP
(
LN

(
x̂l+1

))
+ x̂l+1,

(1)

where LN refers to the layer normalization, and MLP means
a multi-layer perception with two layers. The feature xl−1 of
previous layer is first passed through window attention (W-
MSA) for local information attention calculation. Similarly,
then features are put through sliding window multi-head
attention (SW-MSA) to establish global feature correlations.

The foundation of the swin transformer block is the multi-
head attention. For the original swin-trainsformer, X is the
input to the multi-head attention. The input X is mapped to
the query, key, and value by linear transformation,

Q = XWQ,K = XWK , V = XWV , (2)

where WQ,WK , and WV refer to the learnable projection
matrices. Afterwards, the attention weights between features
are calculated by the inner product of query (K) and key (K),

Attention(Q,K, V ) = SoftMax(
QKT

√
d

+B)V, (3)

where B refers to the position encoding added to the
embedding in each attention layer and

√
d is a scaling factor.

In Fig. 2, we show that such global multi-scale feature
extraction contributes to the quality of the final depth predic-
tion, which naturally yields global coherent and fine-grained
prediction. Also, it becomes essential to further encode and
fuse the geometric features of transparent objects and its
surrounding spatial arrangements. Specially, a depth feature
fusion module is designed to enhance the information fusion,
taking the global geometric feature of transparent objects
from the encoder for further refinement. The entire FFM
consists of three feature fusion sub-modules [26] where each
sub-module improves the fusion efficiency by modelling the
correlation between feature channels. The sub-module in
FFM performs a global average pooling on the feature map
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passed in from the previous layer in the encoder, scales
the generated output to the range [0,1], and multiplies this
value as scale with the feature map of the next layer in the
encoder. With this successive fusion operation, the fusion
sub-module enhances the important features and attenuates
the less important by controlling the magnitude of the scale,
thus making the extracted features more directional.

To reduce the number of parameters, a lightweight and
efficient decoder is constructed to obtain the estimated depth
map, which restores the features generated by 1× 1 convo-
lution kernel to a size of H × W . Similar to the encoder,
the decoder consists of four stages. Each stage contains
two convolution layers followed by one upsampling layer.
Except for the last stage, the output of the lower stage and
the corresponding output of our method together are used
as input. In fact, we found that the encoder incorporating
the attention as well as the decoder with convolutional
layers better can help the model in forecasting find-grained
information about the surface of transparent objects.

We formulate the transparent object depth estimation as a
dense regression problem. The object function is defined as:

L =
∥∥∥D̂ − D∗

∥∥∥2 + β(1− cos
〈
D̂h × D̂w,D∗

h ×D∗
w

〉
), (4)

where the first term is a reconstrction loss that minimizes the
L2 distance between the predicted depth D̂ and the ground
truth D∗. The second term is a regular term which penalizes
the inconsistency in the predicted depth. In addition, β is a
hyper-parameter that is set to 0.01. We train the model with
a weighted loss to supervised regression of the depth value,

Lfinal = αLmasked + βLunmasked, (5)

where Lmasked denotes training by masking the non-
transparent regions using the labels provided by the dataset
and Lunmasked indicates a pixel-wise training on the entire
input image. The final object function Lfinal can guide the
model to learn from color and raw depth images to produce
accurate and clear results.

V. EXPERIMENT

In this section, we perform a series of experiments to
evaluate our approach. Our investigation mainly concentrates
on the following questions: ”How does the model retrieve
clues for depth prediction from the colored image and
inaccurate raw depth image?”; and ”How well does the
model generalize across datasets?”.

A. Datasets and evaluation metrics

Dataset. The ClearGrasp [5] and Omniverse Object
dataset (OOD) [27] are used as the primary training and
evaluation datasets. i) ClearGrasp training samples are gen-
erated by Synthesis AI’s platform which is composed of nine
CAD models based on real-world transparent plastic objects.
The total number of the training dataset is 23524. For testing
samples, ClearGrasp consists of synthesis data and real-world
data. Each type of data all contains known data (i.e., the
transparent objects exist in the training set) and novel data
(i.e., the data is not contained by training dataset).

Fig. 3. The samples of predicted depth images from our TODE-Trans
model. Under different lighting conditions and scenes, our model provides
effective depth prediction for transparent objects.

To access the generalization of the model, we also evaluate
the model on TransCG [28]. ii) TransCG utilizes a robot
to collect a new dataset based on real environments, which
contains 57715 RGB-D images captured by two different
cameras. The dataset contains 51 common objects in daily
life that may lead to inaccurate depth images, which include
reflective objects, transparent objects, translucent objects,
and objects with dense small holes.

Baselines. We use the RGBD-FCN proposed in [27] as the
baseline. The method directly uses Resnet34 as the network
structure to generate depth maps by direct regression. CG
[5] denotes the ClearGrasp algorithm, which adopts three
networks to infer the surface normals, masked transparent
surfaces, occlusion, and contact edge around transparent
surfaces. LIDF-Refine [27] is an abbreviation for the local
implicit depth function prediction followed by depth refine-
ment and is the current best algorithm on ClearGrasp dataset.
DFNet [28] is a lightweight variant of UNet.

Evaluation Metric. Following previous works [28], [27],
[17], we choose Root Mean Squared Error (RMSE), Absolute
Relative Difference (REL), and Mean Absolute Error (MAE).

RMSE is a common indicator used to assess the
quality of predicted depth image, defined as follows:√

1
|D̂|

∑
d∈D̂ ∥d− d∗∥2 where d is the predicted depth, and

d∗ is the ground truth.
REL is the average absolute relative difference between the

predicted depth and the ground truth, 1
|D̂|

∑
d∈D̂ |d− d∗| /d∗.

MAE is the mean absolute error: 1
|D̂|

∑
d∈D̂ |d− d∗|.

Threshold δ: the percentage of pixels for which the pre-
dicted depth satisfies max

(
di

d∗
i
,
d∗
i

di

)
< δ. In this paper, δ is
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TABLE I
COMPARISON TO PREVIOUS TRANSPARENT DEPTH ESTIMATION

METHODS WHERE DA IS AN ABBREVIATION FOR DATA AUGMENTATION

AND FFM IS AN ABBREVIATION FOR FEATURE FUSION MODULE. ↑
INDICATES THE HIGHER THE BETTER AND ↓ INDICATES THE LOWER THE

BETTER.

Methods RMSE↓ REL↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
Cleargrasp Real-known

RGBD-FCN [27] 0.054 0.087 0.048 36.32 67.11 96.26
NLSPN [29] 0.149 0.228 0.127 14.04 26.67 54.32

CG [5] 0.039 0.055 0.029 72.62 86.96 95.58
LIDF-Refine [27] 0.028 0.033 0.020 82.37 92.98 98.63

TODE-Trans w/o DA 0.040 0.060 0.033 58.21 79.91 98.15
TODE-Trans w/o FFM 0.024 0.031 0.018 82.33 95.57 99.59

TODE-Trans (ours) 0.021 0.026 0.015 86.75 96.59 99.73
Cleargrasp Real-novel

RGBF-FCN [27] 0.042 0.070 0.037 42.45 75.68 99.02
NLSPN [29] 0.145 0.240 0.123 13.77 25.81 51.59

CG [5] 0.034 0.045 0.025 76.72 91.00 97.63
LIDF-Refine [27] 0.025 0.036 0.020 76.21 94.01 99.35

TODE-Trans w/o DA 0.025 0.041 0.021 70.09 91.40 99.83
TODE-Trans w/o FFM 0.012 0.017 0.009 95.54 98.94 99.96

TODE-Trans (ours) 0.012 0.016 0.008 95.74 99.08 99.96

TABLE II
COMPARISON RESULTS ON THE TRANSCG DATASET

Methods RMSE↓ REL↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
CG [5] 0.054 0.083 0.037 50.48 68.68 95.28

LIDF-Refine [27] 0.019 0.034 0.015 78.22 94.26 99.80
DFNet [28] 0.018 0.027 0.012 83.76 95.67 99.71

TODE-Trans (ours) 0.013 0.019 0.008 90.43 97.39 99.81

set to 1.05, 1.10, and 1.25. For indicators such as RMSE,
REL, MAE, etc., the lower the better, for threshold δ the
higher the better.

B. Implementation Details

All experiments are conducted on an Intel I5-12333 CPU
with 16 physical cores and an Nvidia RTX 3080Ti GPU.
For the training process, we set the batch size to 16. And
the resolution of images is set to 320× 240 during training
and testing. In the process of training, we use the AdamW
optimizer to train our model with an initial learning rate
of 1e − 3 and the weight decay of 0.05. A multi-step
learning rate schedule is utilized and the model is trained
for a total of 40 epochs. To prevent overfitting, a variety
of data augmentation methods is used before training, such
as random flipping, and rotating. Concerning loss, we set
β = 0.01. The embedding projection layer is implemented
by convolutional operator with a kernel size of 2 with stride
size 2. The final upsampling layer is followed by a 1 × 1
convolution to align the output to the desired depth image.
The model is implemented with MindSpore.

C. Comparison to State-of-the-art Methods

Table I shows our results with the current state-of-the-
art approaches on the ClearGrasp dataset. The empirical
results reveal that our proposed method is significantly better

TABLE III
COMPARISON RESULTS ON CROSS-DOMAIN EXPERIMENTS.

Train Clear+OOD Val TransCG
Methods RMSE↓ REL↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
CG [5] 0.061 0.108 0.049 33.59 54.73 92.48

LIDF-Refine [27] 0.146 0.262 0.115 13.70 26.39 57.95
DFNet [28] 0.048 0.088 0.039 38.65 64.42 95.28

TODE-Trans (ours) 0.034 0.057 0.026 64.10 78.86 98.80

than other approaches on the real-known and real-novel
transparent objects. For all compared baselines, we apply
the same setting to guarantee a fair comparison. For CG
and LIDF-Refine, we use the released official codes and
default hyper-parameters for training. For other methods,
we present the results reported in their original papers. As
such, the methods that we consider for comparison include:
(a) the classical full convolutional neural network scheme,
(b) the current state-of-the art approaches in the transparent
depth completion, (c) the 3D vision-based depth estimation
of transparent objects, and (d) the convolution-based multi-
scale feature fusion scheme.

For our approach, we use swin-transformer as the back-
bone network to recover the exact depth image. We show the
point cloud built from our predicted depth image, from which
we can see that there is little difference between our results
and ground truth. For example, in Fig. 4, the 3D point cloud
of the transparent cups reconstructed from the original depth
sensors misses most of the details below the top of cups. On
the contrary, the whole transparent part is well reconstructed
and completed by the prediction of our transformer model.
We also tested our algorithm on TransCG, and the results
are shown in Table II. Except for the results of our model,
the results of the other algorithms are taken from the original
paper [28]. As shown in Tables I and II, our model achieves a
significant improvement on all metrics compared to previous
models.

D. Results Discussion

The low reflectivity of transparent materials can lead to in-
consistent appearance in different backgrounds, which causes
poor generalization of the model in novel environments.
We also conduct cross-domain experiments to show the
robustness and generalization of our method. Table III shows
the cross-domain experimental results for training validation
on different training and test sets. Similar to the experiments
in TransCG, we perform the following experiments: training
on ClearGrasp and OOD data and then testing on TransCG.
The results show that our method has higher robustness and
generalization than previous methods. In Table III, most of
these baselines are based on CNN and concentrate on local
features, looking for patterns in the neighborhood pixels.
Instead, the encoder in our model utilizes the attention
mechanism to capture relationships from different parts in
the input to recover the missing geometry.

First in the Table I, we compare the performance of
different models in different situations, such as real known
data, real novel data, etc. For instance, when trained on real
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(a) (b)

Case 1:

Case 2:

Case 3:

Case 4:

Fig. 4. Overview of the 3D geometric appearance of scene reconstructed
by the depth and RGB images. (a) shows the reconstructed 3D appearance
of the original depth images. (b) shows the 3D point clouds reconstructed
using our predicted depth images. Compared to the original depth image, our
predicted depth image achieves a better reconstruction and rendering result.
For example, in both case1 and case2, TODE-Trans generates a clear point
cloud for the glass in the figure under different lighting conditions.

known data, the RMSE decreases from 0.028 to 0.021 with a
25% improvement compared to LIDF-Refine. Note that in all
cases our model is better than the full convolutional neural
network model (FCN). We conjecture that FCN suffers from
information missing in the encoder stage by progressively
downsampling during feature extraction so that the depth
can not be recovered well in the decoder process. Previous
methods such as FCN do not perform well, probably because
the convolution operators ignore the dependencies between
long-term features.

To help understand how the attention mechanism recovers
the geometric surface of transparent objects, we also visual-
ize the output of our model. In Fig. 3, we can observe that
our model maintains a clear boundary and refined detail.
The transparent object in the depth image often does not
provide sufficiently accurate depth data, partially due to the
reflection of structured light by the surface of transparent
objects. In Fig. 4, we can observe that more than one-third
of the pixel information in the transparent object area of the
raw depth image is missing. It is a great challenge for the
model to recover the depth information of the transparent
area from the rest of the raw depth image and the paired
RGB image, which demands a powerful ability to extract
contextual information.

E. Ablation Studies

In this section, to evaluate the quality of generated depth,
we utilize the original depth with missing and inaccurate
observations to complete the depth, and the ground truth with
RGB information of scene to render the surface reconstruc-
tion respectively. In Fig. 4, we also visualize the 3D point
clouds converted by RGB-D images for further comparison
and each row displays one example. Each pixel in the depth

TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT INPUT MODALITIES

Methods RMSE↓ REL↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
Depth 0.020 0.025 0.015 95.21 98.24 99.83
RGB 0.30 0.39 0.23 9.52 18.69 40.96

Depth+RGB 0.026 0.041 0.021 74.89 89.95 98.59

image is rendered into a 3D point using camera intrinsics
provided by the dataset, where the color information is
obtained from the corresponding RGB input. The original
depth image captured by the sensor is missing largely. As
a result, the 3D geometry of point clouds reconstructed
using the raw depth has a lot of flaws and missing in
many places. In contrast, the surface reconstruction by our
predicted depth image contains less noise than the originals,
and the geometric appearance of the point cloud is much
clearer.

To investigate the effect of different modalities on the
depth estimation of transparent objects, we train the model
using RGB, depth, and RGB-D as inputs, respectively in
Table IV. In all of these, we adopt the same training
procedure and hyper-parameter setting as described earlier.
Experimental results reveal that simply considering RGB or
depth both ultimately degrades the final performance. Unlike
the conventional depth estimation, for transparent objects,
simply using RGB or depth image alone would hurt the final
predicted quality. Also, we can find that our model presents
a pretty sound balance in terms of the capacity and accuracy.
After investigating which input modalities are useful for the
transparent object depth completion, there are still many
interesting questions to be addressed such as whether the
fusion module is helpful for the depth prediction and how
the data augmentation contributes to the final improvements.
In Table I, we perform ablation experiments without the
fusion module and the models are all trained from scratch.
The qualitative and quantitative results demonstrate that the
fusion module contributes to the improved performance.
Intuitively, fusing information from the global context of
each stage is beneficial for the final depth prediction. From
these results, it is evident that our proposed method can
estimate the depth of transparent objects well.

VI. CONCLUSIONS

In this paper, we propose a model specially designed
for depth completion of transparent objects, which incorpo-
rates transformer and CNNs. Our model also follows the
encoder-decoder framework, in which the encoder leverages
the transformer to extract fine-grained feature representation
by modeling long-distance dependencies and global con-
text information. The decoder gradually aggregates features
from various semantic scales via skip-connections, and then
upsamples them to obtain the resulting depth estimation.
The experimental results show that our model with a trans-
former makes it easier to extract contextual information for
transparent object depth complementation, and shows good
generalization on cross-domain datasets.
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